A Penalty Branch-and-Bound Method for Mixed-Binary Linear Complementarity Problems

Linear complementarity problems (LCPs) are an important modeling tool for many practically relevant situations but also have many important applications in mathematics itself. Although the continuous version of the problem is extremely well studied, much less is known about mixed-integer LCPs (MILCPs) in which some variables have to be integer-valued in a solution. In particular, … Read more

FISTA and Extensions – Review and New Insights

The purpose of this technical report is to review the main properties of an accelerated composite gradient (ACG) method commonly referred to as the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). In addition, we state a version of FISTA for solving both convex and strongly convex composite minimization problems and derive its iteration complexities to generate iterates … Read more

Conic optimization: a survey with special focus on copositive optimization and binary quadratic problems

A conic optimization problem is a problem involving a constraint that the optimization variable be in some closed convex cone. Prominent examples are second order cone programs (SOCP), semidefinite problems (SDP), and copositive problems. We survey recent progress made in this area. In particular, we highlight the connections between nonconvex quadratic problems, binary quadratic problems, … Read more

A new stopping criterion for Krylov solvers applied in Interior Point Methods

A surprising result is presented in this paper with possible far reaching consequences for any optimization technique which relies on Krylov subspace methods employed to solve the underlying linear equation systems. In this paper the advantages of the new technique are illustrated in the context of Interior Point Methods (IPMs). When an iterative method is … Read more

Designing an optimal sequence of non-pharmaceutical interventions for controlling COVID-19

The COVID-19 pandemic has had an unprecedented impact on global health and the economy since its inception in December, 2019 in Wuhan, China. Non-pharmaceutical interventions (NPI) like lockdowns and curfews have been deployed by affected countries for controlling the spread of infections. In this paper, we develop a Mixed Integer Non-Linear Programming (MINLP) epidemic model … Read more

Exact Logit-Based Product Design

The share-of-choice product design (SOCPD) problem is to find the product, as defined by its attributes, that maximizes market share arising from a collection of customer types or segments. When customers follow a logit model of choice, the market share is given by a weighted sum of logistic probabilities, leading to the logit-based share-of-choice product … Read more

SDP-quality bounds via convex quadratic relaxations for global optimization of mixed-integer quadratic programs

We consider the global optimization of nonconvex mixed-integer quadratic programs with linear equality constraints. In particular, we present a new class of convex quadratic relaxations which are derived via quadratic cuts. To construct these quadratic cuts, we solve a separation problem involving a linear matrix inequality with a special structure that allows the use of … Read more

Distributionally Robust Fair Transit Resource Allocation During a Pandemic

This paper studies Distributionally robust Fair transit Resource Allocation model (DrFRAM) under Wasserstein ambiguity set to optimize the public transit resource allocation during a pandemic. We show that the proposed DrFRAM is highly nonconvex and nonlinear and is, in general, NP-hard. Fortunately, we show that DrFRAM can be reformulated as a mixed-integer linear programming (MILP) … Read more

Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets

We study adjustable distributionally robust optimization problems where their ambiguity sets can potentially encompass an infinite number of expectation constraints. Although such an ambiguity set has great modeling flexibility in characterizing uncertain probability distributions, the corresponding adjustable problems remain computationally intractable and challenging. To overcome this issue, we propose a greedy improvement procedure that consists … Read more

A Stochastic Sequential Quadratic Optimization Algorithm for Nonlinear Equality Constrained Optimization with Rank-Deficient Jacobians

A sequential quadratic optimization algorithm is proposed for solving smooth nonlinear equality constrained optimization problems in which the objective function is defined by an expectation of a stochastic function. The algorithmic structure of the proposed method is based on a step decomposition strategy that is known in the literature to be widely effective in practice, … Read more