Column Elimination: An Iterative Approach to Solving Integer Programs

We present column elimination as a general framework for solving (large-scale) integer programming problems. In this framework, solutions are represented compactly as paths in a directed acyclic graph. Column elimination starts with a relaxed representation, that may contain infeasible paths, and solves a constrained network flow over the graph to find a solution. It then … Read more

On Subproblem Tradeoffs in Decomposition for Multiobjective Optimization

Multiobjective optimization is widely used in applications for modeling and solving complex decision-making problems. To help resolve computational and cognitive difficulties associated with problems which have more than 3 or 4 objectives, we propose a decomposition and coordination methodology to support decision making for large multiobjective optimization problems (MOPs) with global, quasi-global, and local variables. … Read more

Adaptive Algorithms for Robust Phase Retrieval

This paper considers the robust phase retrieval, which can be cast as a nonsmooth and nonconvex optimization problem. We propose two first-order algorithms with adaptive step sizes: the subgradient algorithm (AdaSubGrad) and the inexact proximal linear algorithm (AdaIPL). Our contribution lies in the novel design of adaptive step sizes based on quantiles of the absolute … Read more

Relaxed Proximal Point Algorithm: Tight Complexity Bounds and Acceleration without Momentum

\(\) In this paper, we focus on the relaxed proximal point algorithm (RPPA) for solving convex (possibly nonsmooth) optimization problems. We conduct a comprehensive study on three types of relaxation schedules: (i) constant schedule with relaxation parameter \(\alpha_k\equiv \alpha \in (0, \sqrt{2}]\), (ii) the dynamic schedule put forward by Teboulle and Vaisbourd [TV23], and (iii) … Read more

TRFD: A derivative-free trust-region method based on finite differences for composite nonsmooth optimization

\(\) In this work we present TRFD, a derivative-free trust-region method based on finite differences for minimizing composite functions of the form \(f(x)=h(F(x))\), where \(F\) is a black-box function assumed to have a Lipschitz continuous Jacobian, and \(h\) is a known convex Lipschitz function, possibly nonsmooth. The method approximates the Jacobian of \(F\) via forward … Read more

Tuning-Free Bilevel Optimization: New Algorithms and Convergence Analysis

\(\) Bilevel optimization has recently attracted considerable attention due to its abundant applications in machine learning problems. However, existing methods rely on prior knowledge of problem parameters to determine stepsizes, resulting in significant effort in tuning stepsizes when these parameters are unknown. In this paper, we propose two novel tuning-free algorithms, D-TFBO and S-TFBO. D-TFBO … Read more

A Generalization Result for Convergence in Learning-to-Optimize

Convergence in learning-to-optimize is hardly studied, because conventional convergence guarantees in optimization are based on geometric arguments, which cannot be applied easily to learned algorithms. Thus, we develop a probabilistic framework that resembles deterministic optimization and allows for transferring geometric arguments into learning-to-optimize. Our main theorem is a generalization result for parametric classes of potentially … Read more

Spanning and Splitting: Integer Semidefinite Programming for the Quadratic Minimum Spanning Tree Problem

In the quadratic minimum spanning tree problem (QMSTP) one wants to find the minimizer of a quadratic function over all possible spanning trees of a graph. We give two formulations of the QMSTP as mixed-integer semidefinite programs exploiting the algebraic connectivity of a graph. Based on these formulations, we derive a doubly nonnegative relaxation for … Read more

Lipschitz-free Projected Subgradient Method with Time-varying Step-size

We introduce a novel time-varying step-size for the classical projected subgradient method, offering optimal ergodic convergence. Importantly, this approach does not depend on the Lipschitz assumption of the objective function, thereby broadening the convergence result of projected subgradient method to non-Lipschitz case. Article Download View Lipschitz-free Projected Subgradient Method with Time-varying Step-size

Optimism in the Face of Ambiguity Principle for Multi-Armed Bandits

\(\) Follow-The-Regularized-Leader (FTRL) algorithms often enjoy optimal regret for adversarial as well as stochastic bandit problems and allow for a streamlined analysis. However, FTRL algorithms require the solution of an optimization problem in every iteration and are thus computationally challenging. In contrast, Follow-The-Perturbed-Leader (FTPL) algorithms achieve computational efficiency by perturbing the estimates of the rewards … Read more