Global Optimization for Combinatorial Geometry Problems Revisited in the Era of LLMs

Recent progress in LLM-driven algorithm discovery, exemplified by DeepMind’s AlphaEvolve, has produced new best-known solutions for a range of hard geometric and combinatorial problems. This raises a natural question: to what extent can modern off-the-shelf global optimization solvers match such results when the problems are formulated directly as nonlinear optimization problems (NLPs)? We revisit a … Read more

A Majorization-Minimization approach for multiclass classification in a big data scenario

This work presents a novel optimization approach for training linear classifiers in multiclass classification tasks, when focusing on a regularized and smooth Weston-Watkins support vector machine (SVM) model. We propose a Majorization-Minimization (MM) algorithm to solve the resulting, Lipschitz-differentiable, optimization problem. To enhance scalability of the algorithm when tackling large datasets, we introduce an incremental … Read more

The Maximum Clique Problem under Adversarial Uncertainty: a min-max approach

We analyze the problem of identifying large cliques in graphs that are affected by adversarial uncertainty. More specifically, we consider a new formulation, namely the adversarial maximum clique problem, which extends the classical maximum-clique problem to graphs with edges strategically perturbed by an adversary. The proposed mathematical model is thus formulated as a two-player zero-sum … Read more

A speed up strategy for gradient methods

In this paper, we propose a new acceleration strategy for gradient-based methods applied to strictly convex Quadratic Programming (QP) problems. The strategy consists in performing, at selected iterations, minimization steps along alternative descent directions or even within low-dimensional affine subspaces. In particular, considering the contribution of the linear and quadratic part of the objective function … Read more

A Geometric Perspective on Polynomially Solvable Convex Maximization

Convex maximization arises in many applications but is generally NP-hard, even for low-rank objectives. This paper introduces a set of broadly applicable conditions that certify when such problems are polynomially solvable. Our main condition is a new property of the feasible set, which we term co-monotonicity. We show that this property holds for two important … Read more

An Inexact Modified Quasi-Newton Method for Nonsmooth Regularized Optimization

We introduce method iR2N, a modified proximal quasi-Newton method for minimizing the sum of a \(C^1\) function \(f\) and a lower semi-continuous prox-bounded \(h\) that permits inexact evaluations of \(f\), \(\nabla f\) and of the relevant proximal operators. Both \(f\) and \(h\) may be nonconvex. In applications where the proximal operator of \(h\) is not … Read more

Optimizing Two-Tier Robotized Sorting Systems for Urban Parcel Delivery

This paper addresses an operational planning challenge in two-tier robotized sorting systems (T-RSS), an emerging alternative to traditional conveyor-based sorting in e-commerce delivery stations. Designed to be compact and space-efficient, T-RSS use an upper tier to sort parcels from loading stations to drop-off points, which connect to roll containers on a lower tier where parcels … Read more

Optimization over Trained Neural Networks: Going Large with Gradient-Based Algorithms

When optimizing a nonlinear objective, one can employ a neural network as a surrogate for the nonlinear function. However, the resulting optimization model can be time-consuming to solve globally with exact methods. As a result, local search that exploits the neural-network structure has been employed to find good solutions within a reasonable time limit. For … Read more

The Convexity Zoo: A Taxonomy of Function Classes in Optimization

The tractability of optimization problems depends critically on structural properties of the objective function. Convexity guarantees global optimality of local solutions and enables polynomial-time algorithms under mild assumptions, but many problems arising in modern applications—particularly in machine learning—are inherently nonconvex. Remarkably, a large class of such problems remains amenable to efficient optimization due to additional … Read more