A Stochastic Optimization Approach to Energy-Efficient Underground Timetabling under Uncertain Dwell and Running Times

We consider a problem from the context of energy-efficient underground railway timetabling, in which an existing timetable draft is improved by slightly changing departure and running times. In practice, synchronization between accelerating and braking trains to utilize regenerative braking plays a major role for the energy-efficiency of a timetable. Since deviations from a planned timetable … Read more

Lexicographic Branch-and-Bound Column Search

We present an exact generic method for solving the pricing subproblem in a column generation approach, which we call branch-and-bound column search. It searches the space of all feasible columns via a branch-and-bound tree search and simultaneously returns all columns with a reduced-cost value below a certain threshold. The approach is based on an idea … Read more

A $\sqrt{5}/2$-approximation algorithm for optimal piecewise linear approximations of bounded variable products

We investigate the optimal piecewise linear approximation of the bivariate product $ xy $ over rectangular domains. More precisely, our aim is to minimize the number of simplices in the triangulation underlying the approximation, while respecting a prescribed approximation error. First, we show how to construct optimal triangulations consisting of up to five simplices. Using … Read more

EETTlib – Energy-Efficient Train Timetabling Library

We introduce EETTlib, an instance library for the Energy-Efficient Train Timetabling problem. The task in this problem is to adjust a given timetable draft such that several key indicators relating to the energy consumption of the resulting railway traffic are minimized. These include peak power consumption, total energy consumption, loss in recuperation energy, fluctuation in … Read more

A decomposition approach for integrated locomotive scheduling and driver rostering in rail freight transport

In this work, we consider the integrated problem of locomotive scheduling and driver rostering in rail freight companies. Our aim is to compute an optimal simultaneous assignment of locomotives and drivers to the trains listed in a given order book. Mathematically, this leads to the combination of a set-packing problem with compatibility constraints and a … Read more

On Piecewise Linear Approximations of Bilinear Terms: Structural Comparison of Univariate and Bivariate Mixed-Integer Programming Formulations

Bilinear terms naturally appear in many optimization problems. Their inherent nonconvexity typically makes them challenging to solve. One approach to tackle this difficulty is to use bivariate piecewise linear approximations for each variable product, which can be represented via mixed-integer linear programming (MIP) formulations. Alternatively, one can reformulate the variable products as a sum of … Read more

Algorithms for the Clique Problem with Multiple-Choice Constraints under a Series-Parallel Dependency Graph

The clique problem with multiple-choice constraints (CPMC), i.e. the problem of finding a k-clique in a k-partite graph with known partition, occurs as a substructure in many real-world applications, in particular scheduling and railway timetabling. Although CPMC is NP-complete in general, it is known to be solvable in polynomial time when the so-called dependency graph … Read more

Set characterizations and convex extensions for geometric convex-hull proofs

In the present work, we consider Zuckerberg’s method for geometric convex-hull proofs introduced in [Geometric proofs for convex hull defining formulations, Operations Research Letters 44(5), 625–629 (2016)]. It has only been scarcely adopted in the literature so far, despite the great flexibility in designing algorithmic proofs for the completeness of polyhedral descriptions that it offers. … Read more

On Recognizing Staircase Compatibility

For the problem to find an m-clique in an m-partite graph, staircase compatibility has recently been introduced as a polynomial-time solvable special case. It is a property of a graph together with an m-partition of the vertex set and total orders on each subset of the partition. In optimization problems involving m-cliques in m-partite graphs … Read more

The Bipartite Boolean Quadric Polytope with Multiple-Choice Constraints

We consider the bipartite boolean quadric polytope (BQP) with multiple-choice constraints and analyse its combinatorial properties. The well-studied BQP is defined as the convex hull of all quadric incidence vectors over a bipartite graph. In this work, we study the case where there is a partition on one of the two bipartite node sets such … Read more