GasLib – A Library of Gas Network Instances

The development of mathematical simulation and optimization models and algorithms for solving gas transport problems is an active field of research. In order to test and compare these models and algorithms, gas network instances together with demand data are needed. The goal of GasLib is to provide a set of publicly available gas network instances … Read more

Uniqueness of Market Equilibrium on a Network: A Peak-Load Pricing Approach

In this paper we establish conditions under which uniqueness of market equilibrium is obtained in a setup where prior to trading of electricity, transmission capacities between different market regions are fixed. In our setup, firms facing fluctuating demand decide on the size and location of production facilities. They make production decisions constrained by the invested … Read more

Transmission and Generation Investment in Electricity Markets: The Effects of Market Splitting and Network Fee Regimes

We propose an equilibrium model that allows to analyze the long-run impact of the regulatory environment on transmission line expansion by the regulator and investment in generation capacity by private firms in liberalized electricity markets. The model incorporates investment decisions of the transmission operator and private firms in expectation of an energy-only market and cost-based … Read more

Computational Optimization of Gas Compressor Stations: MINLP Models vs. Continuous Reformulations

When considering cost-optimal operation of gas transport networks, compressor stations play the most important role. Proper modeling of these stations leads to complicated mixed-integer nonlinear and nonconvex optimization problems. In this article, we give an isothermal and stationary description of compressor stations, state MINLP and GDP models for operating a single station, and discuss several … Read more

Solving Power-Constrained Gas Transportation Problems using an MIP-based Alternating Direction Method

We present a solution algorithm for problems from steady-state gas transport optimization. Due to nonlinear and nonconvex physics and engineering models as well as discrete controllability of active network devices, these problems lead to hard nonconvex mixed-integer nonlinear optimization models. The proposed method is based on mixed-integer linear techniques using piecewise linear relaxations of the … Read more

High Detail Stationary Optimization Models for Gas Networks: Validation and Results

Due to strict regulatory rules in combination with complex nonlinear physics, major gas network operators in Germany and Europe face hard planning problems that call for optimization. In part 1 of this paper we have developed a suitable model hierarchy for that purpose. Here we consider the more practical aspects of modeling. We validate individual … Read more

An Interior-Point Method for Nonlinear Optimization Problems with Locatable and Separable Nonsmoothness

A lot of real-world optimization models comprise nonconvex and nonlinear as well as nonsmooth functions leading to very hard classes of optimization models. In this article a new interior-point method for the special but practically relevant class of optimization problems with locatable and separable nonsmooth aspects is presented. After motivating and formalizing the problems under … Read more

Validation of Nominations in Gas Network Optimization: Models, Methods, and Solutions

In this article we investigate methods to solve a fundamental task in gas transportation, namely the validation of nomination problem: Given a gas transmission network consisting of passive pipelines and active, controllable elements and given an amount of gas at every entry and exit point of the network, find operational settings for all active elements … Read more