First-Order Objective-Function-Free Optimization Algorithms and Their Complexity

A class of algorithms for unconstrained nonconvex optimization is considered where the value of the objective function is never computed. The class contains a deterministic version of the first-order Adagrad method typically used for minimization of noisy function, but also allows the use of second-order information when available. The rate of convergence of methods in … Read more

OPM, a collection of Optimization Problems in Matlab

OPM is a small collection of CUTEst unconstrained and bound-constrained nonlinear optimization problems, which can be used in Matlab for testing optimization algorithms directly (i.e. without installing additional software). ArticleDownload View PDF

Adaptive Regularization Minimization Algorithms with Non-Smooth Norms

A regularization algorithm (AR1pGN) for unconstrained nonlinear minimization is considered, which uses a model consisting of a Taylor expansion of arbitrary degree and regularization term involving a possibly non smooth norm. It is shown that the non-smoothness of the norm does not affect the O(\epsilon_1^{-(p+1)/p}) upper bound on evaluation complexity for finding first-order \epsilon_1-approximate minimizers … Read more

Hölder Gradient Descent and Adaptive Regularization Methods in Banach Spaces for First-Order Points

This paper considers optimization of smooth nonconvex functionals in smooth infinite dimensional spaces. A Hölder gradient descent algorithm is first proposed for finding approximate first-order points of regularized polynomial functionals. This method is then applied to analyze the evaluation complexity of an adaptive regularization method which searches for approximate first-order points of functionals with $\beta$-H\”older … Read more

Minimization of nonsmooth nonconvex functions using inexact evaluations and its worst-case complexity

An adaptive regularization algorithm using inexact function and derivatives evaluations is proposed for the solution of composite nonsmooth nonconvex optimization. It is shown that this algorithm needs at most O(|log(epsilon)|.epsilon^{-2}) evaluations of the problem’s functions and their derivatives for finding an $\epsilon$-approximate first-order stationary point. This complexity bound therefore generalizes that provided by [Bellavia, Gurioli, … Read more

A note on solving nonlinear optimization problems in variable precision

This short note considers an efficient variant of the trust-region algorithm with dynamic accuracy proposed Carter (1993) and Conn, Gould and Toint (2000) as a tool for very high-performance computing, an area where it is critical to allow multi-precision computations for keeping the energy dissipation under control. Numerical experiments are presented indicating that the use … Read more

Minimizing convex quadratics with variable precision Krylov methods

Iterative algorithms for the solution of convex quadratic optimization problems are investigated, which exploit inaccurate matrix-vector products. Theoretical bounds on the performance of a Conjugate Gradients and a Full-Orthormalization methods are derived, the necessary quantities occurring in the theoretical bounds estimated and new practical algorithms derived. Numerical experiments suggest that the new methods have significant … Read more

A note on preconditioning weighted linear least squares, with consequences for weakly-constrained variational data assimilation

The effect of preconditioning linear weighted least-squares using an approximation of the model matrix is analyzed, showing the interplay of the eigenstructures of both the model and weighting matrices. A small example is given illustrating the resulting potential inefficiency of such preconditioners. Consequences of these results in the context of the weakly-constrained 4D-Var data assimilation … Read more

On the use of the saddle formulation in weakly-constrained 4D-VAR data assimilation

This paper discusses the practical use of the saddle variational formulation for the weakly-constrained 4D-VAR method in data assimilation. It is shown that the method, in its original form, may produce erratic results or diverge because of the inherent lack of monotonicity of the produced objective function values. Convergent, variationaly coherent variants of the algorithm … Read more

A Line-Search Algorithm Inspired by the Adaptive Cubic Regularization Framework and Complexity Analysis

Adaptive regularized framework using cubics has emerged as an alternative to line-search and trust-region algorithms for smooth nonconvex optimization, with an optimal complexity amongst second-order methods. In this paper, we propose and analyze the use of an iteration dependent scaled norm in the adaptive regularized framework using cubics. Within such scaled norm, the obtained method … Read more