Strengthening Dual Bounds for Multicommodity Capacitated Network Design with Unsplittable Flow Constraints

Multicommodity capacitated network design (MCND) models can be used to optimize the consolidation of shipments within e-commerce fulfillment networks. In practice, fulfillment networks require that shipments with the same origin and destination follow the same transfer path. This unsplittable flow requirement complicates the MCND problem, requiring integer programming (IP) formulations with binary variables replacing continuous … Read more

New Dynamic Discretization Discovery Strategies for Continuous-Time Service Network Design

Service Network Design Problems (SNDPs) are prevalent in the freight industry. While the classic SNDP is defined on a discretized planning horizon with integral time units, the Continuous-Time SNDP (CTSNDP) uses a continuous-time horizon to avoid discretization errors. Existing CTSNDP algorithms primarily rely on the Dynamic Discretization Discovery (DDD) framework, which iteratively refines discretization and … Read more

The robust pickup and delivery problem with time windows

This study addresses the robust pickup and delivery problem with time windows (RPDPTW), in which uncertainty in demands and travel times is modelled using robust optimisation. The RPDPTW involves determining the least-cost routes to serve transportation requests from origins to destinations, while respecting vehicle capacity and time window constraints under all anticipated realisations of uncertain … Read more

Mixed Integer Linear Programming Formulations for Robust Surgery Scheduling

We introduce Mixed Integer Linear Programming (MILP) formulations for the two-stage robust surgery scheduling problem (2SRSSP). We derive these formulations by modeling the second-stage problem as a longest path problem on a layered acyclic graph and subsequently converting it into a linear program. This linear program is then dualized and integrated with the first-stage, resulting … Read more

The Edge-based Contiguous p-median Problem with Connections to Logistics Districting

This paper introduces the edge-based contiguous p-median (ECpM) problem to partition the roads in a network into a given number of compact and contiguous territories. Two binary programming models are introduced, both of which incorporate a network distance. The first model requires an exponential number of cut set-based constraints to model contiguity; it is paired … Read more

Multiple Kernel Learning-Aided Column-and-Constraint Generation Method

Two-stage robust optimization (two-stage RO), due to its ability to balance robustness and flexibility, has been widely used in various fields for decision-making under uncertainty. This paper proposes a multiple kernel learning (MKL)-aided column-and-constraint generation (CCG) method to address this issue in the context of data-driven decision optimization, and releases a corresponding registered Julia package, … Read more

Reduction from the partition problem: Dynamic lot sizing problem with polynomial complexity

In this note, we polynomially reduce an instance of the partition problem to a dynamic lot sizing problem, and show that solving the latter problem solves the former problem.  By solving the dynamic programming formulation of the dynamic lot sizing problem, we show that the instance of the partition problem can be solved with pseudo-polynomial … Read more

Gradient-Driven Solution Based on Indifference Analysis (GIA) for Scenario Modelling Optimization Problem

This paper introduces an optimization technique for scenario modeling in uncertain business situations, termed the Gradient-Driven Solution Based on Indifference Analysis (GIA). GIA evolves the conventional methods of scenario planning by applying a reverse-strategy approach, where future financial goals are specified, and the path to attain these targets are engineered backward. It adopts economic concepts … Read more

Neural Embedded Mixed-Integer Optimization for Location-Routing Problems

We present a novel framework that combines machine learning with mixed-integer optimization to solve the Capacitated Location-Routing Problem (CLRP). The CLRP is a classical yet NP-hard problem that integrates strategic facility location with operational vehicle routing decisions, aiming to simultaneously minimize both fixed and variable costs. The proposed method first trains a permutationally invariant neural … Read more

Enhancing Top Efficiency by Minimizing Second-Best Scores: A Novel Perspective on Super Efficiency Models in DEA

In this paper, we reveal a new characterization of the super-efficiency model for Data Envelopment Analysis (DEA). In DEA, the efficiency of each decision making unit (DMU) is measured by the ratio the weighted sum of outputs divided by the weighted sum of inputs.In order to measure efficiency of a DMU, ${\rm DMU}_j$, say, in CCR … Read more