Reduction from the partition problem: Dynamic lot sizing problem with polynomial complexity

In this note, we reduce an instance of the partition problem to a dynamic lot sizing problem in polynomial time, and show that solving the latter problem solves the former problem. We further show that the instance of the partition problem can be solved using polynomial number of addition, multiplication and sort operations in input … Read more

Gradient-Driven Solution Based on Indifference Analysis (GIA) for Scenario Modelling Optimization Problem

This paper introduces an optimization technique for scenario modeling in uncertain business situations, termed the Gradient-Driven Solution Based on Indifference Analysis (GIA). GIA evolves the conventional methods of scenario planning by applying a reverse-strategy approach, where future financial goals are specified, and the path to attain these targets are engineered backward. It adopts economic concepts … Read more

Neural Embedded Mixed-Integer Optimization for Location-Routing Problems

We present a novel framework that combines machine learning with mixed-integer optimization to solve the Capacitated Location-Routing Problem (CLRP). The CLRP is a classical yet NP-hard problem that integrates strategic facility location with operational vehicle routing decisions, aiming to simultaneously minimize both fixed and variable costs. The proposed method first trains a permutationally invariant neural … Read more

Enhancing Top Efficiency by Minimizing Second-Best Scores: A Novel Perspective on Super Efficiency Models in DEA

In this paper, we reveal a new characterization of the super-efficiency model for Data Envelopment Analysis (DEA). In DEA, the efficiency of each decision making unit (DMU) is measured by the ratio the weighted sum of outputs divided by the weighted sum of inputs.In order to measure efficiency of a DMU, ${\rm DMU}_j$, say, in CCR … Read more

An Efficient Algorithm to the Integrated Shift and Task Scheduling Problem

Abstract   This paper deals with operational models for integrated shift and task scheduling problem. Staff scheduling problem is a special case of this with staff requirements as given input to the problem. Both problems become hard to solve when the problems are considered with flexible shifts. Current literature on these problems leaves good scope … Read more

A Branch-and-Price-and-Cut Algorithm for Discrete Network Design Problems Under Traffic Equilibrium

This study addresses discrete network design problems under traffic equilibrium conditions or DNDPs. Given a network and a budget, DNDPs aim to model all-or-nothing decisions such as link addition to minimize network congestion effects. Congestion is measured using traffic equilibrium theory where link travel times are modeled as convex flow-dependent functions and where users make … Read more

A Dynamic Strategic Plan for the Transition to a Clean Bus Fleet using Multi-Stage Stochastic Programming with a Case Study in Istanbul

In recent years, the transition to clean bus fleets has accelerated. Although this transition might bring environmental and economic benefits, it requires a long-term strategic plan due to the large investment costs involved. This paper proposes a multi-stage stochastic program to optimize strategic plans for the clean bus fleet transition that explicitly considers the uncertainty … Read more

An optimization framework to provide volunteers with task selection autonomy and group opportunities

Abstract Nonprofit Organizations (NPOs) rely on volunteers to support community needs but struggle with making strategic volunteer-to-task assignments to enable volunteer satisfaction, and completion of complex tasks. Creation of volunteer groups and their assignment to NPO tasks can help achieve these goals by providing volunteers with opportunity for networking, collaboration, and peer learning. However, strategically … Read more

Simple and Effective: A Deterministic Auction with Support Information

We study an auction design problem where a seller aims to sell a single item to multiple bidders with independent private values. The seller knows only an upper bound on these values and does not know their distribution. The objective is to devise a deterministic auction mechanism effective across a broad set of distributions. We … Read more