Isotonic Optimization with Fixed Costs

This paper introduces a generalized isotonic optimization framework over an arborescence graph, where each node incurs state-dependent convex costs and a fixed cost upon strict increases. We begin with the special case in which the arborescence is a path and develop a dynamic programming (DP) algorithm with an initial complexity of $O(n^3)$, which we improve … Read more

Combining Simulation with Machine Learning and Optimization to Assess Green Hydrogen Production via Offshore Wind in the Dutch North Sea

As countries seek to decarbonize their energy systems, green hydrogen has emerged as a promising energy carrier. This paper studies the production of green hydrogen from offshore wind in the Dutch North Sea, with particular emphasis on understanding how system design decisions and uncertain parameters affect key performance indicators. The analysis builds on a detailed … Read more

Integrated Bus Fleet Electrification Planning Through Accelerated Logic-Based Benders Decomposition and Restriction Heuristics

To meet sustainability goals and regulatory requirements, transit agencies worldwide are planning partial and complete transitions to electric bus fleets. This paper presents the first comprehensive and computationally efficient multi-period optimization framework integrating the key planning decisions necessary to support such electrification initiatives. Our model, formulated as a two-stage integer program with integer subproblems, jointly … Read more

A Data-Driven County-Level Budget Allocation Model for Opioid Crisis Management: Insights from West Virginia

Problem definition. The opioid crisis has remained a major public health challenge in the United States for many years. This study develops a data-driven decision support framework to guide policymakers in allocating county-level budgets across multiple expenditure categories in order to address the opioid crisis. Methodology/results. We compile and curate a detailed dataset on fiscal … Read more

An exact approach for the Train Single-Routing Selection Problem

Given a set of train routes with route costs and a set of compatible route pairs with pairing costs, the Train Single-Routing Selection Problem (TSRSP) seeks to assign one route to each train, minimizing the total cost while ensuring pairwise compatibility among the selected routes. This problem is of significant practical relevance in rail traffic … Read more

The Minimization of the Weighted Completion Time Variance in a Single Machine: A Specialized Cutting-Plane Approach

This study addresses the problem of minimizing the weighted completion time variance (WCTV) in single-machine scheduling. Unlike the unweighted version, which has been extensively studied, the weighted variant introduces unique challenges due to the absence of theoretical properties that could guide the design of efficient algorithms. We propose a mathematical programming framework based on a … Read more

Anesthesiologist Scheduling with Handoffs: A Combined Approach of Optimization and Human Factors

We present a two-stage stochastic programming model for optimizing anesthesiologist schedules, explicitly accounting for uncertainty in surgery durations and anesthesiologist handoffs. To inform model design, we conducted an online survey at our partner institution to identify key factors affecting the quality of intraoperative anesthesiologist handoffs. Insights from the survey results are incorporated into the model, … Read more

Optimal personnel scheduling in hospital pharmacies considering management and operators priorities

In this paper, we address the problem of allocating and scheduling employees for work shifts in the pharmacy sector of a private hospital. To tackle this issue, we introduce the pharmacy staff scheduling problem (PSSP) in the literature. To solve the problem, we propose a mixed-integer programming formulation that considers various aspects, such as the … Read more

Teaching Statistics Using Facility Location Modeling: A Course-based Undergraduate Research Experience

There is a growing need to expand and strengthen the industrial engineering/operations research workforce. Undergraduate research experiences are an effective way to build in-demand skills and to attract people to science, technology, engineering, and mathematics fields, such as industrial engineering/operations research. However, the traditional apprenticeship model of an undergraduate research experience limits the number of … Read more