Noisy Euclidean Distance Matrix Completion with a Single Missing Node

We present several solution techniques for the noisy single source localization problem, i.e.,~the Euclidean distance matrix completion problem with a single missing node to locate under noisy data. For the case that the sensor locations are fixed, we show that this problem is implicitly convex, and we provide a purification algorithm along with the SDP … Read more

An Integer Programming Formulation of the Key Management Problem in Wireless Sensor Networks

With the advent of modern communications systems, much attention has been put on developing methods for securely transferring information between constituents of wireless sensor networks. To this effect, we introduce a mathematical programming formulation for the key management problem, which broadly serves as a mechanism for encrypting communications. In particular, an integer programming model of … Read more

Tightness of a new and enhanced semidefinite relaxation for MIMO detection

In this paper, we consider a fundamental problem in modern digital communications known as multi-input multi-output (MIMO) detection, which can be formulated as a complex quadratic programming problem subject to unit-modulus and discrete argument constraints. Various semidefinite relaxation (SDR) based algorithms have been proposed to solve the problem in the literature. In this paper, we … Read more

Bi-Perspective Functions for Mixed-Integer Fractional Programs with Indicator Variables

Perspective functions have long been used to convert fractional programs into convex programs. More recently, they have been used to form tight relaxations of mixed-integer nonlinear programs with so-called indicator variables. Motivated by a practical application (maximising energy efficiency in an OFDMA system), we consider problems that have a fractional objective and indicator variables simultaneously. … Read more

Optimized Assignment Patterns in Mobile Edge Cloud Networks

Given an existing Mobile Edge Cloud (MEC) network including virtualization facilities of limited capacity, and a set of mobile Access Points (AP) whose data traffic demand changes over time, we aim at finding plans for assigning APs traffic to MEC facilities so that the demand of each AP is satisfied and MEC facility capacities are … Read more

Computing the channel capacity of a communication system affected by uncertain transition probabilities

We study the problem of computing the capacity of a discrete memoryless channel under uncertainty affecting the channel law matrix, and possibly with a constraint on the average cost of the input distribution. The problem has been formulated in the literature as a max-min problem. We use the robust optimization methodology to convert the max-min … Read more

Branch-and-cut methods for the Network Design Problem with Vulnerability Constraints

The aim of Network Design Problem with Vulnerability Constraints (NDPVC), introduced by Gouveia and Leitner [EJOR, 2017], is to design survivable telecommunications networks that impose length bounds on the communication paths of each commodity pair, before and after the failure of any k links. This problem was proposed as an alternative to the Hop-Constrained Survivable … Read more

Locality sensitive heuristics for solving the Data Mule Routing Problem

A usual way to collect data in a Wireless Sensor Network (WSN) is by the support of a special agent, called data mule, that moves between sensor nodes and performs all communication between them. In this work, the focus is on the construction of the route that the data mule must follow to serve all … Read more

Dynamic Spectrum Management: A Complete Complexity Characterization

Consider a multi-user multi-carrier communication system where multiple users share multiple discrete subcarriers. To achieve high spectrum efficiency, the users in the system must choose their transmit power dynamically in response to fast channel fluctuations. Assuming perfect channel state information, two formulations for the spectrum management (power control) problem are considered in this paper: the … Read more

Solving the bandwidth coloring problem applying constraint and integer programming techniques

In this paper, constraint and integer programming formulations are applied to solve Bandwidth Coloring Problem (BCP) and Bandwidth Multicoloring Problem (BMCP). The problems are modeled using distance geometry (DG) approaches, which are then used to construct the constraint programming formulation. The integer programming formulation is based on a previous formulation for the related Minimum Span … Read more