On Minimizing the Energy Consumption of an Electrical Vehicle

The electrical vehicle energy management can be expressed as a Bang-Bang optimal control problem. In this work, we discuss on a new formulation and about the way to approximate this optimal control problem of Bang-Bang type via a discretization technique associated with a Branch-and-Bound algorithm. The problem that we focus on, is the minimization of … Read more

On Minimizing the Energy Consumption of an Electrical Vehicle

The electrical vehicle energy management can be expressed as a Bang-Bang optimal control problem. In this work, we discuss on a new formulation and about the way to approximate this optimal control problem of Bang-Bang type via a discretization technique associated with a Branch-and-Bound algorithm. The problem that we focus on, is the minimization of … Read more

A parametric active set method for quadratic programs with vanishing constraints

Combinatorial and logic constraints arising in a number of challenging optimization applications can be formulated as vanishing constraints. Quadratic programs with vanishing constraints (QPVCs) then arise as subproblems during the numerical solution of such problems using algorithms of the Sequential Quadratic Programming type. QPVCs are nonconvex problems violating standard constraint qualifications. In this paper, we … Read more

Optimal adaptive control of cascading power grid failures

We describe experiments with parallel algorithms for computing adaptive controls for attenuating power grid cascading failures. Citation Columbia University, 2010 Article Download View Optimal adaptive control of cascading power grid failures

An Efficient Method to Estimate the Suboptimality of Affine Controllers

We consider robust output feedback control of time-varying, linear discrete-time systems operating over a finite horizon. For such systems, we consider the problem of designing robust causal controllers that minimize the expected value of a convex quadratic cost function, subject to mixed linear state and input constraints. Determination of an optimal control policy for such … Read more

Achieving Higher Frequencies in Large-Scale Nonlinear Model Predictive Control

We present new insights into how to achieve higher frequencies in large-scale nonlinear predictive control using truncated-like schemes. The basic idea is that, instead of solving the full nonlinear programming (NLP) problem at each sampling time, we solve a single, truncated quadratic programming (QP) problem. We present conditions guaranteeing stability of the approximation error derived … Read more

Lipschitz solutions of optimal control problems with state constraints of arbitrary order

In this paper we generalize to an arbitrary order, under minimal hypotheses, some sufficient conditions for Lipschitz continuity of the solution of a state constrained optimal control problems. The proof combines the approach by Hager in 1979 for dealing with first-order state constraints, and the high-order alternative formulation of the optimality conditions. Citation Published as … Read more

PROACTIVE ENERGY MANAGEMENT FOR NEXT-GENERATION BUILDING SYSTEMS

We present a proactive energy management framework that integrates predictive dynamic building models and day-ahead forecasts of disturbances affecting efficiency and costs. This enables an efficient management of resources and an accurate prediction of the daily electricity demand profile. The strategy is based on the on-line solution of mixed-integer nonlinear programming problems. The framework is … Read more

A Computational Framework for Uncertainty Quantification and Stochastic Optimization in Unit Commitment with Wind Power Generation

We present a computational framework for integrating a state-of-the-art numerical weather prediction (NWP) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the NWP model with an ensemble-based uncertainty quantification strategy implemented in a distributed-memory parallel computing architecture. We discuss computational issues arising in the implementation of the … Read more

Convergence and Convergence Rate of Stochastic Gradient Search in the Case of Multiple and Non-Isolated Extrema

The asymptotic behavior of stochastic gradient algorithms is studied. Relying on some results of differential geometry (Lojasiewicz gradient inequality), the almost sure point-convergence is demonstrated and relatively tight almost sure bounds on the convergence rate are derived. In sharp contrast to all existing result of this kind, the asymptotic results obtained here do not require … Read more