Random-Sampling Multipath Hypothesis Propagation for Cost Approximation in Long-Horizon Optimal Control

In this paper, we develop a Monte-Carlo based heuristic approach to approximate the objective function in long horizon optimal control problems. In this approach, we evolve the system state over multiple trajectories into the future while sampling the noise disturbances at each time-step, and find the weighted average of the costs along all the trajectories. … Read more

A Solution Framework for Linear PDE-Constrained Mixed-Integer Problems

We present a general numerical solution method for control problems with PDE-defined state variables over a finite set of binary or continuous control variables. We show empirically that a naive approach that applies a numerical discretization scheme to the PDEs (and if necessary a linearization scheme) to derive constraints for a mixed-integer linear program (MILP) … Read more

Spectral Gap Optimization of Divergence Type Diffusion Operators

In this paper, we address the problem of maximizing the spectral gap of a divergence type diffusion operator. Our main application of interest is characterizing the distribution of a swarm of agents that evolve on a bounded domain in Rn according to a Markov process. A subclass of the divergence type operators that we introduce … Read more

Experimental operation of a solar-driven climate system with thermal energy storages using mixed-integer nonlinear MPC

This work presents the results of experimental operation of a solar-driven climate system using mixed-integer nonlinear Model Predictive Control (MPC). The system is installed in a university building and consists of two solar thermal collector fields, an adsorption cooling machine with different operation modes, a stratified hot water storage with multiple inlets and outlets as … Read more

A Survey of Recent Scalability Improvements for Semidefinite Programming with Applications in Machine Learning, Control, and Robotics

Historically, scalability has been a major challenge to the successful application of semidefinite programming in fields such as machine learning, control, and robotics. In this paper, we survey recent approaches for addressing this challenge including (i) approaches for exploiting structure (e.g., sparsity and symmetry) in a problem, (ii) approaches that produce low-rank approximate solutions to … Read more

Improved Penalty Algorithm for Mixed Integer PDE Constrained Optimization (MIPDECO) Problems

Optimal control problems including partial differential equation (PDE) as well as integer constraints merge the combinatorial difficulties of integer programming and the challenges related to large-scale systems resulting from discretized PDEs. So far, the Branch-and-Bound framework has been the most common solution strategy for such problems. In order to provide an alternative solution approach, especially … Read more

Multiphase Mixed-Integer Nonlinear Optimal Control of Hybrid Electric Vehicles

This paper considers the problem of computing the non-causal minimum-fuel energy management strategy of a hybrid electric vehicle on a given driving cycle. Specifically, we address the multiphase mixed-integer nonlinear optimal control problem arising when optimal gear choice, torque split and engine on/off controls are sought in off-line evaluations. We propose an efficient model by … Read more

Efficient Derivative Evaluation for Rigid-body Dynamics based on Recursive Algorithms subject to Kinematic and Loop Constraints

Simulation, optimization and control of robotic and bio-mechanical systems depend on a mathematical model description, typically a rigid-body system connected by joints, for which efficient algorithms to compute the forward or inverse dynamics exist. Models that e.g.\ include spring-damper systems are subject to both kinematic and loop constraints. Gradient-based optimization and control methods require derivatives … Read more

Fast Robust Methods for Singular State-Space Models

State-space models are used in a wide range of time series analysis applications. Kalman filtering and smoothing are work-horse algorithms in these settings. While classic algorithms assume Gaussian errors to simplify estimation, recent advances use a broad range of optimization formulations to allow outlier-robust estimation, as well as constraints to capture prior information. Here we … Read more

A Comparison of Nonsmooth, Nonconvex, Constrained Optimization Solvers for the Design of Time-Delay Compensators

We present a detailed set of performance comparisons of two state-of-the-art solvers for the application of designing time-delay compensators, an important problem in the field of robust control. Formulating such robust control mechanics as constrained optimization problems often involves objective and constraint functions that are both nonconvex and nonsmooth, both of which present significant challenges … Read more