Free Material Optimization with Fundamental Eigenfrequency Constraints.

The goal of this paper is to formulate and solve free material optimization problems with constraints on the smallest eigenfrequency of the optimal structure. A natural formulation of this problem as linear semidefinite program turns out to be numerically intractable. As an alternative, we propose a new approach, which is based on a nonlinear semidefinite … Read more

On the Optimal On-Line Management of Photovoltaic-Hydrogen Hybrid Energy Systems

We present an on-line management strategy for photovoltaic-hydrogen (PV-H2) hybrid energy systems. The strategy follows a receding-horizon principle and exploits solar radiation forecasts and statistics generated through a Gaussian process model. We demonstrate that incorporating forecast information can dramatically improve the reliability and economic performance of these promising energy production devices. Article Download View On … Read more

Hybrid MPI/OpenMP parallel support vector machine training

Support Vector Machines are a powerful machine learning technology, but the training process involves a dense quadratic optimization problem and is computationally challenging. A parallel implementation of Support Vector Machine training has been developed, using a combination of MPI and OpenMP. Using an interior point method for the optimization and a reformulation that avoids the … Read more

Simultaneously solving seven optimization problems in relative scale

In this paper we develop and analyze an efficient algorithm which solves seven related optimization problems simultaneously, in relative scale. Each iteration of our method is very cheap, with main work spent on matrix-vector multiplication. We prove that if a certain sequence generated by the algorithm remains bounded, then the method must terminate in $O(1/\delta)$ … Read more

Optimal structure of gas transmission trunklines

In this paper, we consider the optimal design of a straight pipeline system. Suppose a gas pipeline is to be designed to transport a specified flowrate from the entry point to the gas demand point. Physical and contractual requirements at supply and delivery nodes are known as well as the costs to buy and lay … Read more

Approximating Hessians in multilevel unconstrained optimization

We consider Hessian approximation schemes for large-scale multilevel unconstrained optimization problems, which typically present a sparsity and partial separability structure. This allows iterative quasi-Newton methods to solve them despite of their size. Structured finite-difference methods and updating schemes based on the secant equation are presented and compared numerically inside the multilevel trust-region algorithm proposed by … Read more

Project Scheduling

Nowadays, construction projects grow in complexity and size. So, finding feasible schedules which efficiently use scarce resources is a challenging task within project management. Project scheduling consists of determining the starting and finishing times of the activities in a project. These activities are linked by precedence relations and their processing requires one or more resources. … Read more

Adaptive First-Order Methods for General Sparse Inverse Covariance Selection

In this paper, we consider estimating sparse inverse covariance of a Gaussian graphical model whose conditional independence is assumed to be partially known. Similarly as in [5], we formulate it as an $l_1$-norm penalized maximum likelihood estimation problem. Further, we propose an algorithm framework, and develop two first-order methods, that is, adaptive spectral projected gradient … Read more

Generalized power method for sparse principal component analysis

In this paper we develop a new approach to sparse principal component analysis (sparse PCA). We propose two single-unit and two block optimization formulations of the sparse PCA problem, aimed at extracting a single sparse dominant principal component of a data matrix, or more components at once, respectively. While the initial formulations involve nonconvex functions, … Read more

Sensitivity analysis of the optimal solutions to Huff-type competitive location and design problems

A chain wants to set up a single new facility in a planar market where similar facilities of competitors, and possibly of its own chain, are already present. Fixed demand points split their demand probabilistically over all facilities in the market proportionally with their attraction to each facility, determined by the different perceived qualities of … Read more