Space mapping: Models, sensitivities, and trust-regions methods

The goal of this paper is to organize some of the mathematical and algorithmic aspects of the recently proposed space-mapping technique for continuous optimization with expensive function evaluations. First, we consider the mapping from the fine space to the coarse space when the models are vector-valued functions and when the space-mapping (nonlinear) least-squares residual is … Read more

Bounds on measures satisfying moment conditions

Given a semi algebraic set S of R^n we provide a numerical approximation procedure that yields upper and lower bounds on mu(S), for measures mu that satisfy some given moment conditions. The bounds are obtained as solutions of positive semidefinite programs that can be solved via standard software packages like the LMI MATLAB toolbox. CitationAnnals … Read more

The Maximum Box Problem and its Application to Data Analysis

Given two finite sets of points $X^+$ and $X^-$ in $\R^n$, the maximum box problem consists in finding an interval (“box”) $B=\{x : l \leq x \leq u\}$ such that $B\cap X^-=\emptyset$, and the cardinality of $B\cap X^+$ is maximized. A simple generalization can be obtained by instead maximizing a weighted sum of the elements … Read more

[PENNON – A Generalized Augmented Lagrangian Methodfor Semidefinite Programming

This article describes a generalization of the PBM method by Ben-Tal and Zibulevsky to convex semidefinite programming problems. The algorithm used is a generalized version of the Augmented Lagrangian method. We present details of this algorithm as implemented in a new code PENNON. The code can also solve second-order conic programming (SOCP) problems, as well … Read more

Power transmission network design by a greedy randomized adaptive path relinking approach

This paper illustrates results obtained by a new metaheuristic approach, Greedy Randomized Adaptive Path Relinking, applied to solve static power transmission network design problems. This new approach consists of a generalization of GRASP concepts to explore different trajectories between two CitationAT&T Labs Research Report, December 2001 Submitted to PSCC’02.ArticleDownload View PDF

New Versions of Interior Point Methods Applied to the Optimal Power Flow Problem

Interior Point methods for Nonlinear Programming have been extensively used to solve the Optimal Power Flow problem. These optimization algorithms require the solution of a set of nonlinear equations to obtain the optimal solution of the power network equations. During the iterative process to solve these equations, the search for the optimum is based on … Read more

User’s Guide for SeDuMi Interface 1.01

A user-friendly free Matlab package for defining Linear Matrix Inequality (LMI) problems. It acts as an interface for the Self-Dual-Minimisation package SeDuMi developed by Jos F. Sturm. The functionalities of SeDuMi Interface are the following: (1) Declare an LMI problem. Five Matlab functions allow to define completely an LMI problem which can be characterised by … Read more

New formulation and resolution method for the p-Center problem

The $p$-Center problem consists in locating $p$ facilities among a set of $M$ possible locations and assigning $N$ clients to them in order to minimize the maximum distance between a client and the facility to which he is allocated. We present a new integer linear programming formulation for this Min-Max problem with a polynomial number … Read more

Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems

It is well known that the eigenvalues of a real symmetric matrix are not everywhere differentiable. A classical result of Ky Fan states that each eigenvalue of a symmetric matrix is the difference of two convex functions. This directly implies that the eigenvalues of a symmetric matrix are semismooth everywhere. Based on a very recent … Read more

Sufficient Optimality in a Parabolic Control Problem

We define a class of parabolic problems with control and state constraints and identify a problem within this class which possesses a locally unique critical point satisfying the second order sufficient optimality conditions. In this solution inequality constraints on the control are strongly active. The second derivative of the Lagrangian is not globally coercive. This … Read more