A Stochastic MPC Framework for Stationary Battery Systems

We present a stochastic model predictive control (MPC) framework to determine real-time commitments in energy and frequency regulation markets for a stationary battery system while simultaneously mitigating long-term demand charges for an attached load. The framework solves a two-stage stochastic program over a receding horizon that maximizes the expected profit and that factors in uncertainty … Read more

Best subset selection via bi-objective mixed integer linear programming

We study the problem of choosing the best subset of p features in linear regression given n observations. This problem naturally contains two objective functions including minimizing the amount of bias and minimizing the number of predictors. The existing approaches transform the problem into a single-objective optimization problem either by combining the two objectives using … Read more

Size Matters: Cardinality-Constrained Clustering and Outlier Detection via Conic Optimization

Plain vanilla K-means clustering is prone to produce unbalanced clusters and suffers from outlier sensitivity. To mitigate both shortcomings, we formulate a joint outlier-detection and clustering problem, which assigns a prescribed number of datapoints to an auxiliary outlier cluster and performs cardinality-constrained K-means clustering on the residual dataset. We cast this problem as a mixed-integer … Read more

Integrated Generator Maintenance and Operations Scheduling under Uncertain Failure Times

Planning maintenances and operations is an important concern in power systems. Although optimization based joint maintenance and operations scheduling is studied in the literature, sudden disruptions due to random generator failures are not considered. In this paper we propose a stochastic mixed-integer programming approach for integrated condition-based maintenance and operations scheduling problem for a fleet … Read more

Multistage Stochastic Unit Commitment Using Stochastic Dual Dynamic Integer Programming

Unit commitment (UC) is a key operational problem in power systems used to determine an optimal daily or weekly generation commitment schedule. Incorporating uncertainty in this already difficult mixed integer optimization problem introduces significant computational challenges. Most existing stochastic UC models consider either a two-stage decision structure, where the commitment schedule for the entire planning … Read more

Optimal threshold classification characteristics

This study looks at the application of mathematical concepts of entropy and Fibonacci sequence in creating optimal dimensional relations of classification character. The paper is devoted to optimization of some numerical relations and integers as unified threshold characteristics of classification type, aimed for example at systemic optimizing the measuring information of various processes. The paper … Read more

Combinatorial Optimization Problems in Engineering Applications

This paper deals with several combinatorial optimization problems. The most challenging such problem is the quadratic assignment problem. It is considered in both two dimensions (QAP) and in three dimensions (Q3AP) and in the context of communication engineering. Semidefinite relaxations are used to derive lower bounds for the optimum while heuristics are applied to either … Read more

A Note on the Forward-Douglas–Rachford Splitting for Monotone Inclusion and Convex Optimization

We shed light on the structure of the “three-operator” version of the forward-Douglas–Rachford splitting algorithm for finding a zero of a sum of maximally monotone operators $A + B + C$, where $B$ is cocoercive, involving only the computation of $B$ and of the resolvent of $A$ and of $C$, separately. We show that it … Read more

Structural Properties of Affine Sparsity Constraints

We introduce a new constraint system for sparse variable selection in statistical learning. Such a system arises when there are logical conditions on the sparsity of certain unknown model parameters that need to be incorporated into their selection process. Formally, extending a cardinality constraint, an affine sparsity constraint (ASC) is defined by a linear inequality … Read more

A Bregman alternating direction method of multipliers for sparse probabilistic Boolean network problem

The main task of genetic regulatory networks is to construct a sparse probabilistic Boolean network (PBN) based on a given transition-probability matrix and a set of Boolean networks (BNs). In this paper, a Bregman alternating direction method of multipliers (BADMM) is proposed to solve the minimization problem raised in PBN. All the customized subproblem-solvers of … Read more