Superiorization: An optimization heuristic for medical physics

Purpose: To describe and mathematically validate the superiorization methodology, which is a recently-developed heuristic approach to optimization, and to discuss its applicability to medical physics problem formulations that specify the desired solution (of physically given or otherwise obtained constraints) by an optimization criterion. Methods: The superiorization methodology is presented as a heuristic solver for a … Read more

A variable smoothing algorithm for solving convex optimization problems

In this article we propose a method for solving unconstrained optimization problems with convex and Lipschitz continuous objective functions. By making use of the Moreau envelopes of the functions occurring in the objective, we smooth the latter to a convex and differentiable function with Lipschitz continuous gradient by using both variable and constant smoothing parameters. … Read more

Matheuristics for $\PsihBcLearning

Recently, the so-called $\psi$-learning approach, the Support Vector Machine (SVM) classifier obtained with the ramp loss, has attracted attention from the computational point of view. A Mixed Integer Nonlinear Programming (MINLP) formulation has been proposed for $\psi$-learning, but solving this MINLP formulation to optimality is only possible for datasets of small size. For datasets of … Read more

A new Search via Probability Algorithm for solving Engineering Optimization Problems

The Search Algorithms have been introduced in the paper [3][6] under the name ‘Search via Probability Algorithm’. These optimization techniques converge very fast and are very efficient for solving optimization problems with very large scale feasible domains. But these optimization techniques are not effective in solving the numerical optimization problems with long narrow feasible domains. … Read more

Automated improvement of radiation therapy treatment plans by optimization under reference dose constraints

A method is presented that automatically improves upon previous treatment plans by optimization under reference dose constraints. In such an optimization, a previous plan is taken as reference and a new optimization is performed towards some goal, such as minimization of the doses to healthy structures, under the constraint that no structure can become worse … Read more

Factoring nonnegative matrices with linear programs

This paper describes a new approach for computing nonnegative matrix factorizations (NMFs) with linear programming. The key idea is a data-driven model for the factorization, in which the most salient features in the data are used to express the remaining features. More precisely, given a data matrix X, the algorithm identifies a matrix C that … Read more

Convergence and Perturbation Resilience of Dynamic String-Averaging Projection Methods

We consider the convex feasibility problem (CFP) in Hilbert space and concentrate on the study of string-averaging projection (SAP) methods for the CFP, analyzing their convergence and their perturbation resilience. In the past, SAP methods were formulated with a single predetermined set of strings and a single predetermined set of weights. Here we extend the … Read more

Continuous Dynamic Constrained Optimisation – The Challenges

Many real-world dynamic problems have constraints, and in certain cases not only the objective function changes over time, but also the constraints. However, there is no research in answering the question of whether current algorithms work well on continuous dynamic constrained optimisation problems (DCOPs), nor is there any benchmark problem that reflects the common characteristics … Read more

Optimal synthesis in the Reeds and Shepp problem with a onesided variation of velocity

We consider a time-optimal problem for the Reeds and Shepp model describing a moving point on a plane, with a onesided variation of the speed and a free final direction of velocity. Using Pontryagin Maximum Principle, we obtain all possible types of extremals and, analyzing them and discarding nonoptimal ones, construct the optimal synthesis. Citation … Read more

A discrete L-curve for the regularization of ill-posed inverse problems

In many applications, the discretization of continuous ill-posed inverse problems results in discrete ill-posed problems whose solution requires the use of regularization strategies. The L-curve criterium is a popular tool for choosing good regularized solutions, when the data noise norm is not a priori known. In this work, we propose replacing the original ill-posed inverse … Read more