Achieving Higher Frequencies in Large-Scale Nonlinear Model Predictive Control

We present new insights into how to achieve higher frequencies in large-scale nonlinear predictive control using truncated-like schemes. The basic idea is that, instead of solving the full nonlinear programming (NLP) problem at each sampling time, we solve a single, truncated quadratic programming (QP) problem. We present conditions guaranteeing stability of the approximation error derived … Read more

Prediction Range Estimation from Noisy Raman Spectra

Inferences need to be drawn in biological systems using experimental multivariate data. The number of samples collected in many such experiments is small, and the data is noisy. We present and study the performance of a robust optimization (RO) model for such situations. We adapt this model to generate a minimum and a maximum estimation … Read more

Solving A Low-Rank Factorization Model for Matrix Completion by A Nonlinear Successive Over-Relaxation Algorithm

The matrix completion problem is to recover a low-rank matrix from a subset of its entries. The main solution strategy for this problem has been based on nuclear-norm minimization which requires computing singular value decompositions — a task that is increasingly costly as matrix sizes and ranks increase. To improve the capacity of solving large-scale … Read more

Lipschitz solutions of optimal control problems with state constraints of arbitrary order

In this paper we generalize to an arbitrary order, under minimal hypotheses, some sufficient conditions for Lipschitz continuity of the solution of a state constrained optimal control problems. The proof combines the approach by Hager in 1979 for dealing with first-order state constraints, and the high-order alternative formulation of the optimality conditions. Citation Published as … Read more

Two-Stage Stochastic Programming Involving CVaR with an Application to Disaster Management

Traditional two-stage stochastic programming is risk-neutral; that is, it considers the expectation as the preference criterion while comparing the random variables (e.g., total cost) to identify the best decisions. However, in the presence of variability risk measures should be incorporated into decision making problems in order to model its effects. In this study, we consider … Read more

Newton–Picard-Based Preconditioning for Linear-Quadratic Optimization Problems with Time-Periodic Parabolic PDE Constraints

We develop and investigate two preconditioners for a basic linear iterative splitting method for the numerical solution of linear-quadratic optimization problems with time-periodic parabolic PDE constraints. The resulting real-valued linear system to be solved is symmetric indefinite. We propose all-at-once symmetric indefinite preconditioners based on a Newton–Picard approach which divides the variable space into slow … Read more

MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems

CG, SYMMLQ, and MINRES are Krylov subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ’s solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This … Read more

Economic Impacts of Advanced Weather Forecasting on Energy System Operations

We analyze the impacts of adopting advanced weather forecasting systems at different levels of the decision-making hierarchy of the power grid. Using case studies, we show that state-of-the-art numerical weather prediction (NWP) models can provide high-precision forecasts and uncertainty information that can significantly enhance the performance of planning, scheduling, energy management, and feedback control systems. … Read more

Locating a competitive facility in the plane with a robustness criterion

A new continuous location model is presented and embedded in the literature on robustness in facility location. The multimodality of the model is investigated, and a branch and bound method based on dc optimization is described. Numerical experience is reported, showing that the developed method allows one to solve in a few seconds problems with … Read more

PROACTIVE ENERGY MANAGEMENT FOR NEXT-GENERATION BUILDING SYSTEMS

We present a proactive energy management framework that integrates predictive dynamic building models and day-ahead forecasts of disturbances affecting efficiency and costs. This enables an efficient management of resources and an accurate prediction of the daily electricity demand profile. The strategy is based on the on-line solution of mixed-integer nonlinear programming problems. The framework is … Read more