The multiphase course timetabling problem

This paper introduces the multiphase course timetabling problem and presents mathematical formulations and effective solution algorithms to solve it in a real case study. Consider a pool of lessons and a number of students who are required to take a subset of these lessons to graduate. Each lesson consists of a predetermined and consecutive sequence … Read more

On the generation of Metric TSP instances with a large integrality gap by branch-and-cut.

This paper introduces a computational method for generating metric Travelling Salesperson Problem (TSP) instances having a large integrality gap. The method is based on the solution of an NP-hard problem, called IH-OPT, that takes in input a fractional solution of the Subtour Elimination Problem (SEP) on a TSP instance and compute a TSP instance having … Read more

A New Bilevel Optimization Approach for Computing Ramsey Numbers

In this article we address the problem of finding lower bounds for small Ramsey numbers $R(m,n)$ using circulant graphs. Our constructive approach is based on finding feasible colorings of circulant graphs using Integer Programming (IP) techniques. First we show how to model the problem as a Stackelberg game and, using the tools of bilevel optimization, … Read more

Extremal Probability Bounds in Combinatorial Optimization

In this paper, we compute the tightest possible bounds on the probability that the optimal value of a combinatorial optimization problem in maximization form with a random objective exceeds a given number, assuming only knowledge of the marginal distributions of the objective coefficient vector. The bounds are “extremal” since they are valid across all joint … Read more

On fault-tolerant low-diameter clusters in graphs

Cliques and their generalizations are frequently used to model “tightly knit” clusters in graphs and identifying such clusters is a popular technique used in graph-based data mining. One such model is the $s$-club, which is a vertex subset that induces a subgraph of diameter at most $s$. This model has found use in a variety … Read more

Interdicting Low-Diameter Cohesive Subgroups in Large-Scale Social Networks

The s-clubs model cohesive social subgroups as vertex subsets that induce subgraphs of diameter at most s. In defender-attacker settings, for low values of s, they can represent tightly-knit communities whose operation is undesirable for the defender. For instance, in online social networks, large communities of malicious accounts can effectively propagate undesirable rumors. In this … Read more

Energy-efficient Automated Vertical Farms

Autonomous vertical farms (VFs) are becoming increasingly more popular, because they allow to grow food minimising water consumption and the use of pesticides, while greatly increasing the yield per square metre, compared with traditional agriculture. To meet sustainability goals, however, VFs must operate at maximum efficiency; it would be otherwise impossible to compete with the … Read more

Solving a Class of Cut-Generating Linear Programs via Machine Learning

Cut-generating linear programs (CGLPs) play a key role as a separation oracle to produce valid inequalities for the feasible region of mixed-integer programs. When incorporated inside branch-and-bound, the cutting planes obtained from CGLPs help to tighten relaxations and improve dual bounds. However, running the CGLPs at the nodes of the branch-and-bound tree is computationally cumbersome … Read more

Solving Graph Partitioning on Sparse Graphs: Cuts, Projections, and Extended Formulations

This paper explores new solution approaches for the graph partitioning problem. While the classic formulations for graph partitioning are compact, they either suffer from a poor relaxation, symmetry, or contain a cubic number of constraints regardless of the graph density. These shortcomings often result in poor branch-and-bound performance. We approach this problem from perspective of … Read more

A primal heuristic to compute an upper bound set for multi-objective 0-1 linear optimisation problems

This paper presents an algorithm aiming to compute an upper bound set for a multi-objective linear optimisation problem with binary variables (p-01LP). Inspired by the well known « Feasibility Pump » algorithm in single objective optimisation, it belongs to the class of primal heuristics. The proposed algorithm, named « Gravity Machine », aims to deal … Read more