Tight bounds on the maximal area of small polygons: Improved Mossinghoff polygons

A small polygon is a polygon of unit diameter. The maximal area of a small polygon with $n=2m$ vertices is not known when $m \ge 7$. In this paper, we construct, for each $n=2m$ and $m\ge 3$, a small $n$-gon whose area is the maximal value of a one-variable function. We show that, for all … Read more

A Branch & Bound Algorithm for Robust Binary Optimization with Budget Uncertainty

Since its introduction in the early 2000s, robust optimization with budget uncertainty has received a lot of attention. This is due to the intuitive construction of the uncertainty sets and the existence of a compact robust reformulation for (mixed-integer) linear programs. However, despite its compactness, the reformulation performs poorly when solving robust integer problems due … Read more

An Overview of Nested Decomposition for Multi-Level Optimization Problems

Nested multi-level structures are frequently encountered in many real-world optimization problems. Decomposition techniques are a commonly applied approach used to handle nested multi-level structures; however, the typical problem-specific focus of such techniques has led to numerous specialized formulations and solution methods. This lack of generalized results for nested multi-level optimization problems is addressed in this … Read more

A Theoretical and Computational Analysis of Full Strong-Branching

Full strong-branching (henceforth referred to as strong-branching) is a well-known variable selection rule that is known experimentally to produce significantly smaller branch-and-bound trees in comparison to all other known variable selection rules. In this paper, we attempt an analysis of the performance of the strong-branching rule both from a theoretical and a computational perspective. On … Read more

A Sum of Squares Characterization of Perfect Graphs

We present an algebraic characterization of perfect graphs, i.e., graphs for which the clique number and the chromatic number coincide for every induced subgraph. We show that a graph is perfect if and only if certain nonnegative polynomials associated with the graph are sums of squares. As a byproduct, we obtain several infinite families of … Read more

Exactness of Parrilo’s conic approximations for copositive matrices and associated low order bounds for the stability number of a graph

De Klerk and Pasechnik (2002) introduced the bounds $\vartheta^{(r)}(G)$ ($r\in \mathbb{N}$) for the stability number $\alpha(G)$ of a graph $G$ and conjectured exactness at order $\alpha(G)-1$: $\vartheta^{(\alpha(G)-1)}(G)=\alpha(G)$. These bounds rely on the conic approximations $\mathcal{K}_n^{(r)}$ by Parrilo (2000) for the copositive cone $\text{COP}_n$. A difficulty in the convergence analysis of $\vartheta^{(r)}$ is the bad behaviour … Read more

On Polytopes with Linear Rank with respect to Generalizations of the Split Closure

In this paper we study the rank of polytopes contained in the 0-1 cube with respect to $t$-branch split cuts and $t$-dimensional lattice cuts for a fixed positive integer $t$. These inequalities are the same as split cuts when $t=1$ and generalize split cuts when $t > 1$. For polytopes contained in the $n$-dimensional 0-1 … Read more

The equilateral small octagon of maximal width

A small polygon is a polygon of unit diameter. The maximal width of an equilateral small polygon with $n=2^s$ vertices is not known when $s \ge 3$. This paper solves the first open case and finds the optimal equilateral small octagon. Its width is approximately $3.24\%$ larger than the width of the regular octagon: $\cos(\pi/8)$. … Read more

The multiphase course timetabling problem

This paper introduces the multiphase course timetabling problem and presents mathematical formulations and effective solution algorithms to solve it in a real case study. Consider a pool of lessons and a number of students who are required to take a subset of these lessons to graduate. Each lesson consists of a predetermined and consecutive sequence … Read more

On the generation of Metric TSP instances with a large integrality gap by branch-and-cut.

This paper introduces a computational method for generating metric Travelling Salesperson Problem (TSP) instances having a large integrality gap. The method is based on the solution of an NP-hard problem, called IH-OPT, that takes in input a fractional solution of the Subtour Elimination Problem (SEP) on a TSP instance and compute a TSP instance having … Read more