Coercive polynomials and their Newton polytopes

Many interesting properties of polynomials are closely related to the geometry of their Newton polytopes. In this article we analyze the coercivity on $\mathbb{R}^n$ of multivariate polynomials $f\in \mathbb{R}[x]$ in terms of their Newton polytopes. In fact, we introduce the broad class of so-called gem regular polynomials and characterize their coercivity via conditions imposed on … Read more

A Lagrangean Decomposition Approach for Robust Combinatorial Optimization

We address robust versions of combinatorial optimization problems, specializing on the discrete scenario case and the uncorrelated ellipsoidal uncertainty case. We present a branch and bound-algorithm for the min-max variant of these problems which uses lower bounds obtained from Lagrangean decomposition, allowing to separate the uncertainty aspect in the objective function from the combinatorial structure … Read more

Branch-and-bound for bi-objective integer programming

In Pareto bi-objective integer optimization the optimal result corresponds to a set of non- dominated solutions. We propose a generic bi-objective branch-and-bound algorithm that uses a problem-independent branching rule exploiting available integer solutions, and cutting plane generation taking advantage of integer objective values. The developed algorithm is applied to the bi-objective team orienteering problem with … Read more

The Quadratic Assignment Problem is Easy for Robinsonian Matrices

We present a new polynomially solvable case of the Quadratic Assignment Problem in Koopmans-Beckman form QAP(A,B), by showing that the identity permutation is optimal when A and B are respectively a Robinson similarity and dissimilarity matrix and one of A or B is a Toeplitz matrix. A Robinson (dis)similarity matrix is a symmetric matrix whose … Read more

Circuit and bond polytopes on series-parallel graphs

In this paper, we describe the circuit polytope on series-parallel graphs. We first show the existence of a compact extended formulation. Though not being explicit, its construction process helps us to inductively provide the description in the original space. As a consequence, using the link between bonds and circuits in planar graphs, we also describe … Read more

Analyzing Node-Weighted Oblivious Matching Problem via Continuous LP with Jump Discontinuity

We prove the first non-trivial performance ratio strictly above 0.5 for the weighted Ranking algorithm on the oblivious matching problem where nodes in a general graph can have arbitrary weights. We have discovered a new structural property of the ranking algorithm: if a node has two unmatched neighbors, then it will still be matched even … Read more

Steplength Thresholds for Invariance Preserving of Discretization Methods of Dynamical Systems on a Polyhedron

Steplength thresholds for invariance preserving of three types of discretization methods on a polyhedron are considered. For Taylor approximation type discretization methods we prove that a valid steplength threshold can be obtained by finding the first positive zeros of a finite number of polynomial functions. Further, a simple and efficient algorithm is proposed to numerically … Read more

A polyhedral study of the diameter constrained minimum spanning tree problem

This paper provides a study of integer linear programming formulations for the diameter constrained spanning tree problem (DMSTP) in the natural space of edge design variables. After presenting a straightforward model based on the well known jump inequalities a new stronger family of circular-jump inequalities is introduced. These inequalities are further generalized in two ways: … Read more

The split-demand one-commodity pickup-and-delivery travelling salesman problem

This paper introduces a new vehicle routing problem transferring one commodity between customers with a capacitated vehicle that can visit a customer more than once,although a maximum number of visits must be respected. It generalizes the capacitated vehicle routing problem with split demands and some other variants recently addressed in the literature. We model the … Read more

Stronger Multi-Commodity Flow Formulations of the Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem is a much-studied (and strongly NP-hard) combinatorial optimization problem, for which many integer programming formulations have been proposed. We present some new multi-commodity flow (MCF) formulations, and show that they dominate all of the existing ones, in the sense that their continuous relaxations yield stronger lower bounds. Moreover, we show … Read more