A Continuous Characterization of the Maximum-Edge Biclique Problem

The problem of finding large complete subgraphs in bipartite graphs (that is, bicliques) is a well-known combinatorial optimization problem referred to as the maximum-edge biclique problem (MBP), and has many applications, e.g., in web community discovery, biological data analysis and text mining. In this paper, we present a new continuous characterization for MBP. Given a … Read more

The Subset Sum Game

In this work we address a game theoretic variant of the Subset Sum problem, in which two decision makers (agents/players) compete for the usage of a common resource represented by a knapsack capacity. Each agent owns a set of integer weighted items and wants to maximize the total weight of its own items included in … Read more

Exact Solution of the Robust Knapsack Problem

We consider an uncertain variant of the knapsack problem in which the weight of the items is not exactly known in advance, but belongs to a given interval, and an upper bound is imposed on the number of items whose weight di ffers from the expected one. For this problem, we provide a dynamic programming algorithm … Read more

Efficient Heuristic Algorithms for Maximum Utility Product Pricing Problems

We propose improvements to some of the best heuristic algorithms for optimal product pricing problem originally designed by Dobson and Kalish in the late 1980’s and in the early 1990’s. Our improvements are based on a detailed study of a fundamental decoupling structure of the underlying mixed integer programming (MIP) problem and on incorporating more … Read more

An extended approach for lifting clique tree inequalities

We present a new lifting approach for strengthening arbitrary clique tree inequalities that are known to be facet defining for the symmetric traveling salesman problem in order to get stronger valid inequalities for the symmetric quadratic traveling salesman problem (SQTSP). Applying this new approach to the subtour elimination constraints (SEC) leads to two new classes … Read more

A Semidefinite Approach to the $ Cover Problem

We apply theta body relaxations to the $K_i$ cover problem and use this to show polynomial time solvability for certain classes of graphs. In particular, we give an effective relaxation where all $K_i$-$p$-hole facets are valid, addressing an open question of Conforti et al \cite{conforti}. For the triangle free problem, we show for $K_n$ that … Read more

Iterative Hard Thresholding Methods for $ Regularized Convex Cone Programming

In this paper we consider $l_0$ regularized convex cone programming problems. In particular, we first propose an iterative hard thresholding (IHT) method and its variant for solving $l_0$ regularized box constrained convex programming. We show that the sequence generated by these methods converges to a local minimizer. Also, we establish the iteration complexity of the … Read more

Maximizing expected utility over a knapsack constraint

The expected utility knapsack problem is to pick a set of items whose values are described by random variables so as to maximize the expected utility of the total value of the items picked while satisfying a constraint on the total weight of items picked. We consider the following solution approach for this problem: (i) … Read more

On two relaxations of quadratically-constrained cardinality minimization

This paper considers a quadratically-constrained cardinality minimization problem with applications to digital filter design, subset selection for linear regression, and portfolio selection. Two relaxations are investigated: the continuous relaxation of a mixed integer formulation, and an optimized diagonal relaxation that exploits a simple special case of the problem. For the continuous relaxation, an absolute upper … Read more

Minimum Concave Cost Flow Over a Grid Network

The minimum concave cost network flow problem (MCCNFP) is NP-hard, but efficient polynomial-time algorithms exist for some special cases such as the uncapacitated lot-sizing problem and many of its variants. We study the MCCNFP over a grid network with a general nonnegative separable concave cost function. We show that this problem is polynomially solvable when … Read more