Integer linear programming formulations for the minimum connectivity inference problem and model reduction principles

The minimum connectivity inference (MCI) problem represents an NP-hard generalization of the well-known minimum spanning tree problem. Given a set of vertices and a finite collection of subsets (of this vertex set), the MCI problem requires to find an edge set of minimal cardinality so that the vertices of each subset are connected. Although the … Read more

Two-row and two-column mixed-integer presolve using hash-based pairing methods

In state-of-the-art mixed-integer programming solvers, a large array of reduction techniques are applied to simplify the problem and strengthen the model formulation before starting the actual branch-and-cut phase. Despite their mathematical simplicity, these methods can have significant impact on the solvability of a given problem. However, a crucial property for employing presolving techniques successfully is … Read more

New facets and facet-generating procedures for the orientation model for vertex coloring problems

In this work, we study the \emph{orientation model} for vertex coloring problems with the aim of finding partial descriptions of the associated polytopes. We present new families of valid inequalities, most of them supported by paths of the input graph. We develop facet-generating procedures for the associated polytopes, which we denominate \emph{path-lifting procedures}. Given a … Read more

Relating Single-Scenario Facets to the Convex Hull of the Extensive Form of a Stochastic Single-Node Flow Polytope

Stochastic mixed-integer programs (SMIPs) are a widely-used modeling paradigm for sequential decision making under uncertainty. One popular solution approach to solving SMIPs is to solve the so-called “extensive form” directly as a large-scale (deterministic) mixed-integer program. In this work, we consider the question of when a facet-defining inequality for the convex hull of a deterministic, … Read more

Decomposing the Train Scheduling Problem into Integer Optimal Polytopes

This paper presents conditions for which the linear relaxation for the train scheduling problem is integer-optimal. These conditions are then used to identify how to partition a general problem’s feasible region into integer-optimal polytopes. Such an approach yields an extended formulation that contains far fewer binary variables. Our computational experiments show that this approach results … Read more

Equivalences among the chi measure, Hoffman constant, and Renegar’s distance to ill-posedness

We show the equivalence among the following three condition measures of a full column rank matrix $A$: the chi measure, the signed Hoffman constant, and the signed distance to ill-posedness. The latter two measures are constructed via suitable collections of matrices obtained by flipping the signs of some rows of $A$. Our results provide a … Read more

New characterizations of Hoffman constants for systems of linear constraints

We give a characterization of the Hoffman constant of a system of linear constraints in $\R^n$ relative to a reference polyhedron $R\subseteq\R^n$. The reference polyhedron $R$ represents constraints that are easy to satisfy such as box constraints. In the special case $R = \R^n$, we obtain a novel characterization of the classical Hoffman constant. More … Read more

Knapsack Polytopes – A Survey

The 0/1 knapsack polytope is the convex hull of all 0/1 vectors that satisfy a given single linear inequality with non-negative coefficients. This paper provides a comprehensive overview of knapsack polytopes. We discuss basic polyhedral properties, (lifted) cover and other valid inequalities, cases for which complete linear descriptions are known, geometric properties for small dimensions, … Read more

A Linear Programming Based Approach to the Steiner Tree Problem with a Fixed Number of Terminals

We present a set of integer programs (IPs) for the Steiner tree problem with the property that the best solution obtained by solving all, provides an optimal Steiner tree. Each IP is polynomial in the size of the underlying graph and our main result is that the linear programming (LP) relaxation of each IP is … Read more

On prime and minimal representations of a face of a polyhedron

In this paper, a new method for determining all minimal representations of a face of a polyhedron is proposed. A main difficulty for determining prime and minimal representations of a face is that the deletion of one redundant constraint can change the redundancy of other constraints. To reduce computational efforts in finding all minimal representations … Read more