Spectral Operators of Matrices

The class of matrix optimization problems (MOPs) has been recognized in recent years to be a powerful tool by researchers far beyond the optimization community to model many important applications involving structured low rank matrices. This trend can be credited to some extent to the exciting developments in the emerging field of compressed sensing. The … Read more

Lagrangian-Conic Relaxations, Part II: Applications to Polynomial Optimization Problems

We present the moment cone (MC) relaxation and a hierarchy of sparse Lagrangian-SDP relaxations of polynomial optimization problems (POPs) using the unified framework established in Part I. The MC relaxation is derived for a POP of minimizing a polynomial subject to a nonconvex cone constraint and polynomial equality constraints. It is an extension of the … Read more

Lagrangian-Conic Relaxations, Part I: A Unified Framework and Its Applications to Quadratic Optimization Problems

In Part I of a series of study on Lagrangian-conic relaxations, we introduce a unified framework for conic and Lagrangian-conic relaxations of quadratic optimization problems (QOPs) and polynomial optimization problems (POPs). The framework is constructed with a linear conic optimization problem (COP) in a finite dimensional vector space endowed with an inner product, where the … Read more

Generalized Gauss Inequalities via Semidefinite Programming

A sharp upper bound on the probability of a random vector falling outside a polytope, based solely on the first and second moments of its distribution, can be computed efficiently using semidefinite programming. However, this Chebyshev-type bound tends to be overly conservative since it is determined by a discrete worst-case distribution. In this paper we … Read more

Iterative Reweighted Linear Least Squares for Exact Penalty Subproblems on Product Sets

We present two matrix-free methods for solving exact penalty subproblems on product sets that arise when solving large-scale optimization problems. The first approach is a novel iterative reweighting algorithm (IRWA), which iteratively minimizes quadratic models of relaxed subproblems while automatically updating a relaxation vector. The second approach is based on alternating direction augmented Lagrangian (ADAL) … Read more

Equivalence and Strong Equivalence between Sparsest and Least $\ell_1hBcNorm Nonnegative Solutions of Linear Systems and Their Application

Many practical problems can be formulated as $\ell_0$-minimization problems with nonnegativity constraints, which seek the sparsest nonnegative solutions to underdetermined linear systems. Recent study indicates that $\ell_1$-minimization is efficient for solving some classes of $\ell_0$-minimization problems. From a mathematical point of view, however, the understanding of the relationship between $\ell_0$- and $\ell_1$-minimization remains incomplete. In … Read more

Equivalence and Strong Equivalence between Sparsest and Least l1-Norm Nonnegative Solutions of Linear Systems and Their Application

Many practical problems can be formulated as $\ell_0$-minimization problems with nonnegativity constraints, which seek the sparsest nonnegative solutions to underdetermined linear systems. Recent study indicates that $\ell_1$-minimization is efficient for solving some classes of $\ell_0$-minimization problems. From a mathematical point of view, however, the understanding of the relationship between $\ell_0$- and $\ell_1$-minimization remains incomplete. In … Read more

Active Set Methods with Reoptimization for Convex Quadratic Integer Programming

We present a fast branch-and-bound algorithm for solving convex quadratic integer programs with few linear constraints. In each node, we solve the dual problem of the continuous relaxation using an infeasible active set method proposed by Kunisch and Rendl to get a lower bound; this active set algorithm is well suited for reoptimization. Our algorithm … Read more

On the Convergence of Alternating Minimization for Convex Programming with Applications to Iteratively Reweighted Least Squares and Decomposition Schemes

This paper is concerned with the alternating minimization (AM) for solving convex minimization problems where the decision variables vector is split into two blocks. The objective function is a sum of a differentiable convex function and a separable (possible) nonsmooth extended real-valued convex function, and consequently constraints can be incorporated. We analyze the convergence rate … Read more

On the Proximal Jacobian Decomposition of ALM for Multiple-block Separable Convex Minimization Problems and its Relationship to ADMM

The augmented Lagrangian method (ALM) is a benchmark for solving convex minimization problems with linear constraints. When the objective function of the model under consideration is representable as the sum of some functions without coupled variables, a Jacobian or Gauss-Seidel decomposition is often implemented to decompose the ALM subproblems so that the functions’ properties could … Read more