Approximating Subdifferentials by Random Sampling of Gradients

Many interesting real functions on Euclidean space are differentiable almost everywhere. All Lipschitz functions have this property, but so, for example, does the spectral abscissa of a matrix (a non-Lipschitz function). In practice, the gradient is often easy to compute. We investigate to what extent we can approximate the Clarke subdifferential of such a function … Read more

A Pattern Search Filter Method for Nonlinear Programming without Derivatives

This paper presents and analyzes a pattern search method for general constrained optimization based on filter methods for step acceptance. Roughly, a filter method accepts a step that either improves the objective function value or the value of some function that measures the constraint violation. The new algorithm does not compute or approximate any derivatives, … Read more

A bundle filter method for nonsmooth nonlinear optimization

We consider minimizing a nonsmooth objective subject to nonsmooth constraints. The nonsmooth functions are approximated by a bundle of subgradients. The novel idea of a filter is used to promote global convergence. Citation NA\195, Department of Mathematics, University of Dundee, UK, December, 1999 Article Download View A bundle filter method for nonsmooth nonlinear optimization