Trust-region interior-point method for large sparse l_1 optimization.

In this paper, we propose an interior-point method for large sparse l_1 optimization. After a short introduction, the complete algorithm is introduced and some implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Thus nonconvex problems can be solved successfully. The results of computational experiments given in this … Read more

Fast Moreau Envelope Computation I: Numerical Algorithms

The present article summarizes the state of the art algorithms to compute the discrete Moreau envelope, and presents a new linear-time algorithm, named NEP for NonExpansive Proximal mapping. Numerical comparisons between the NEP and two existing algorithms: The Linear-time Legendre Transform (LLT) and the Parabolic Envelope (PE) algorithms are performed. Worst-case time complexity, convergence results, … Read more

Computing Proximal Points on Nonconvex Functions

The proximal point mapping is the basis of many optimization techniques for convex functions. By means of variational analysis, the concept of proximal mapping was recently extended to nonconvex functions that are prox-regular and prox-bounded. In such a setting, the proximal point mapping is locally Lipschitz continuous and its set of fixed points coincide with … Read more

ACCPM with a nonlinear constraint and an active set strategy to solve nonlinear multicommodity flow problems

This paper proposes an implementation of a constrained analytic center cutting plane method to solve nonlinear multicommodity flow problems. The new approach exploits the property that the objective of the Lagrangian dual problem has a smooth component with second order derivatives readily available in closed form. The cutting planes issued from the nonsmooth component and … Read more

About Regularity of Collections of Sets

The paper continues investigations of stationarity and regularity properties of set systems in normed spaces started in the previous paper of the author. It contains a summary of different characterizations (both primal and dual) of regularity and a list of sufficient conditions for a set system to be regular. CitationUniversity of Ballarat, School of Information … Read more

Variable metric method for minimization of partially separable nonsmooth functions.

In this report, we propose a new partitioned variable metric method for minimization of nonsmooth partially separable functions. After a short introduction, the complete algorithm is introduced and some implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Computational experiments given confirm efficiency and robustness of the new … Read more

Toward a new DIRECT algorithm. A two-points based sampling method

The DIRECT algorithm was motivated by a modification to Lipschitzian optimization. The algorithm begins its search by sampling the objective function at the midpoint of an interval, where this function attains its lowest value, and then divides this interval by trisecting it. One of its weakness is that if a global minimum lies at the … Read more

Analysis of a Belgian Chocolate Stabilization Problem

We give a detailed numerical and theoretical analysis of a stabilization problem posed by V. Blondel in 1994. Our approach illustrates the effectiveness of a new gradient sampling algorithm for finding local optimizers of nonsmooth, nonconvex optimization problems arising in control, as well as the power of nonsmooth analysis for understanding variational problems involving polynomial … Read more

Perturbations and metric regularity

A point x is an approximate solution of a generalized equation [b lies in F(x)] if the distance from the point b to the set F(x) is small. Metric regularity of the set-valued mapping F means that, locally, a constant multiple of this distance bounds the distance from x to an exact solution. The smallest … Read more

Finding optimal algorithmic parameters using a mesh adaptive direct search

The objectives of this paper are twofold; we first demonstrate the flexibility of the mesh adaptive direct search (MADS) in identifying locally optimal algorithmic parameters. This is done by devising a general framework for parameter tuning. The framework makes provision for surrogate objectives. Parameters are sought so as to minimize some measure of performance of … Read more