Packing Ellipsoids with Overlap

The problem of packing ellipsoids of different sizes and shapes into an ellipsoidal container so as to minimize a measure of overlap between ellipsoids is considered. A bilevel optimization formulation is given, together with an algorithm for the general case and a simpler algorithm for the special case in which all ellipsoids are in fact … Read more

A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem

We consider solving the $\ell_1$-regularized least-squares ($\ell_1$-LS) problem in the context of sparse recovery, for applications such as compressed sensing. The standard proximal gradient method, also known as iterative soft-thresholding when applied to this problem, has low computational cost per iteration but a rather slow convergence rate. Nevertheless, when the solution is sparse, it often … Read more

Learning how to play Nash, potential games and alternating minimization method for structured nonconvex problems on Riemannian manifolds

In this paper we consider minimization problems with constraints. We show that if the set of constaints is a Riemannian manifold of non positive curvature and the objective function is lower semicontinuous and satisfi es the Kurdyka-Lojasiewicz property, then the alternating proximal algorithm in Euclidean space is naturally extended to solve that class of problems. We … Read more

On Differentiability Properties of Player Convex Generalized Nash Equilibrium Problems

This article studies differentiability properties for a reformulation of a player convex generalized Nash equilibrium problem as a constrained and possibly nonsmooth minimization problem. By using several results from parametric optimization we show that, apart from exceptional cases, all locally minimal points of the reformulation are differentiability points of the objective function. This justifies a … Read more

Approximate Maximum Principle for Discrete Approximations of Optimal Control Systems with Nonsmooth Objectives and Endpoint Constraints

The paper studies discrete/finite-difference approximations of optimal control problems governed by continuous-time dynamical systems with endpoint constraints. Finite-difference systems, considered as parametric control problems with the decreasing step of discretization, occupy an intermediate position between continuous-time and discrete-time (with fixed steps) control processes and play a significant role in both qualitative and numerical aspects of … Read more

Nonsmooth cone-constrained optimization with applications to semi-infinite programming

The paper is devoted to the study of general nonsmooth problems of cone-constrained optimization (or conic programming) important for various aspects of optimization theory and applications. Based on advanced constructions and techniques of variational analysis and generalized differentiation, we derive new necessary optimality conditions (in both “exact” and “fuzzy” forms) for nonsmooth conic programs, establish … Read more

Level Bundle Methods for oracles with on-demand accuracy

For nonsmooth convex optimization, we consider level bundle methods built using an oracle that computes values for the objective function and a subgradient at any given feasible point. For the problems of interest, the exact oracle information is computable, but difficult to obtain. In order to save computational effort the oracle can provide estimations with … Read more

Reweighted $\ell_1hBcMinimization for Sparse Solutions to Underdetermined Linear Systems

Numerical experiments have indicated that the reweighted $\ell_1$-minimization performs exceptionally well in locating sparse solutions of underdetermined linear systems of equations. Thus it is important to carry out a further investigation of this class of methods. In this paper, we point out that reweighted $\ell_1$-methods are intrinsically associated with the minimization of the so-called merit … Read more

Efficient Cardinality/Mean-Variance Portfolios

A number of variants of the classical Markowitz mean-variance optimization model for portfolio selection have been investigated to render it more realistic. Recently, it has been studied the imposition of a cardinality constraint, setting an upper bound on the number of active positions taken in the portfolio, in an attempt to improve its performance and … Read more

Sparse/Robust Estimation and Kalman Smoothing with Nonsmooth Log-Concave Densities: Modeling, Computation, and Theory

Piecewise linear quadratic (PLQ) penalties play a crucial role in many applications, including machine learning, robust statistical inference, sparsity promotion, and inverse problems such as Kalman smoothing. Well known examples of PLQ penalties include the l2, Huber, l1 and Vapnik losses. This paper builds on a dual representation for PLQ penalties known from convex analysis. … Read more