Cutting-planes for optimization of convex functions over nonconvex sets

Motivated by mixed-integer, nonlinear optimization problems, we derive linear inequality characterizations for sets of the form conv{(x, q ) \in R^d × R : q \in Q(x), x \in R^d – int(P )} where Q is convex and differentiable and P \subset R^d . We show that in several cases our characterization leads to polynomial-time … Read more

On a generalization of Pólya’s and Putinar-Vasilescu’s Positivstellensätze

In this paper we provide a generalization of two well-known positivstellensätze, namely the positivstellensatz from Pólya [Georg Pólya. Über positive darstellung von polynomen vierteljschr. In Naturforsch. Ges. Zürich, 73: 141-145, 1928] and the positivestellensatz from Putinar and Vasilescu [Mihai Putinar and Florian-Horia Vasilescu. Positive polynomials on semialgebraic sets. Comptes Rendus de l’Académie des Sciences – … Read more

Lagrangian Transformation and Interior Ellipsoid Methods in Convex Optimization

The rediscovery of the affine scaling method in the late 80s was one of the turning points which led to a new chapter in Modern Optimization – the interior point methods (IPMs). Simultaneously and independently the theory of exterior point methods for convex optimization arose. The two seemingly unconnected fields turned out to be intrinsically … Read more

Minimal Residual Methods for Complex Symmetric, Skew Symmetric, and Skew Hermitian Systems

While there is no lack of efficient Krylov subspace solvers for Hermitian systems, there are few for complex symmetric, skew symmetric, or skew Hermitian systems, which are increasingly important in modern applications including quantum dynamics, electromagnetics, and power systems. For a large consistent complex symmetric system, one may apply a non-Hermitian Krylov subspace method disregarding … Read more

An interior proximal point method with phi-divergence for Equilibrium Problems

In this paper, we consider the problem of general equilibrium in a  finite-dimensional space on a closed convex set. For solving this problem, we developed an interior proximal point algorithm with phi-divergence. Under reasonable assumptions, we prove that the sequence generated by the algorithm converges to a solution of the Equilibrium Problem, when the regularization … Read more

GENERALIZATIONS OF THE DENNIS-MOR\’E THEOREM II

This paper is a continuation of our previous paper were we presented generalizations of the Dennis-Mor\’e theorem to characterize q-superliner convergences of quasi-Newton methods for solving equations and variational inequalities in Banach spaces. Here we prove Dennis-Mor\’e type theorems for inexact quasi-Newton methods applied to variational inequalities in finite dimensions. We first consider variational inequalities … Read more

The proximal-proximal gradient algorithm

We consider the problem of minimizing a convex objective which is the sum of a smooth part, with Lipschitz continuous gradient, and a nonsmooth part. Inspired by various applications, we focus on the case when the nonsmooth part is a composition of a proper closed convex function P and a nonzero affine map, with the … Read more

Optimal Primal-Dual Methods for a Class of Saddle Point Problems

We present a novel accelerated primal-dual (APD) method for solving a class of deterministic and stochastic saddle point problems (SPP). The basic idea of this algorithm is to incorporate a multi-step acceleration scheme into the primal-dual method without smoothing the objective function. For deterministic SPP, the APD method achieves the same optimal rate of convergence … Read more

About uniform regularity of collections of sets

We further investigate the uniform regularity property of collections of sets via primal and dual characterizing constants. These constants play an important role in determining convergence rates of projection algorithms for solving feasibility problems. CitationPublished in Serdica Math. J. 39, 287–312 (2013) http://www.math.bas.bg/serdica/2013/2013-287-312.pdfArticleDownload View PDF

Second-order growth, tilt stability, and metric regularity of the subdifferential

This paper sheds new light on several interrelated topics of second-order variational analysis, both in finite and infinite-dimensional settings. We establish new relationships between second-order growth conditions on functions, the basic properties of metric regularity and subregularity of the limiting subdifferential, tilt-stability of local minimizers, and positive definiteness/semidefiniteness properties of the second-order subdifferential (or generalized … Read more