On a class of nonsmooth composite functions

We discuss in this paper a class of nonsmooth functions which can be represented, in a neighborhood of a considered point, as a composition of a positively homogeneous convex function and a smooth mapping which maps the considered point into the null vector. We argue that this is a sufficiently rich class of functions and … Read more

On differentiability of symmetric matrix valued functions

With every real valued function, of a real argument, can be associated a matrix function mapping a linear space of symmetric matrices into itself. In this paper we study directional differentiability properties of such matrix functions associated with directionally differentiable real valued functions. In particular, we show that matrix valued functions inherit semismooth properties of … Read more

A new exact penalty function

For constrained smooth or nonsmooth optimization problems, new continuously differentiable penalty functions are derived. They are proved exact in the sense that under some nondegeneracy assumption, local optimizers of a nonlinear program are precisely the optimizers of the associated penalty function. This is achieved by augmenting the dimension of the program by a variable that … Read more

Limiting behavior of the central path in semidefinite optimization

It was recently shown that, unlike in linear optimization, the central path in semidefinite optimization (SDO) does not converge to the analytic center of the optimal set in general. In this paper we analyze the limiting behavior of the central path to explain this unexpected phenomenon. This is done by deriving a new necessary and … Read more

Characterization of the limit point of the central path in semidefinite programming

In linear programming, the central path is known to converge to the analytic center of the set of optimal solutions. Recently, it has been shown that this is not necessarily true for linear semidefinite programming in the absence of strict complementarity. The present paper deals with the formulation of a convex problem whose solution defines … Read more

SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB — User’s Guide

SOSTOOLS is a free MATLAB toolbox for formulating and solving sum of squares (SOS) optimization programs. It uses a simple notation and a flexible and intuitive high-level user interface to specify the SOS programs. Currently these are solved using SeDuMi, a well-known semidefinite programming solver, while SOSTOOLS handles internally all the necessary reformulations and data … Read more

Combinatorial Structures in Nonlinear Programming

Non-smoothness and non-convexity in optimization problems often arise because a combinatorial structure is imposed on smooth or convex data. The combinatorial aspect can be explicit, e.g. through the use of ”max”, ”min”, or ”if” statements in a model, or implicit as in the case of bilevel optimization where the combinatorial structure arises from the possible … Read more

Relating Homogeneous Cones and Positive Definite Cones via hBcalgebras

$T$-algebras are non-associative algebras defined by Vinberg in the early 1960’s for the purpose of studying homogeneous cones. Vinberg defined a cone $K(\mathcal A)$ for each $T$-algebra $\mathcal A$ and proved that every homogeneous cone is isomorphic to one such $K(\mathcal A)$. We relate each $T$-algebra $\mathcal A$ with a space of linear operators in … Read more

PENNON – A Code for Convex Nonlinear and Semidefinite Programming

We introduce a computer program PENNON for the solution of problems of convex Nonlinear and Semidefinite Programming (NLP-SDP). The algorithm used in PENNON is a generalized version of the Augmented Lagrangian method, originally introduced by Ben-Tal and Zibulevsky for convex NLP problems. We present generalization of this algorithm to convex NLP-SDP problems, as implemented in … Read more

A primal-dual symmetric relaxation for homogeneous conic systems

We address the feasibility of the pair of alternative conic systems of constraints Ax = 0, x \in C, and -A^T y \in C^*, defined by an m by n matrix A and a cone C in the n-dimensional Euclidean space. We reformulate this pair of conic systems as a primal-dual pair of conic programs. … Read more