Lipschitz minimization and the Goldstein modulus

Goldstein’s 1977 idealized iteration for minimizing a Lipschitz objective fixes a distance – the step size – and relies on a certain approximate subgradient. That “Goldstein subgradient” is the shortest convex combination of objective gradients at points within that distance of the current iterate. A recent implementable Goldstein-style algorithm allows a remarkable complexity analysis (Zhang … Read more

Convex optimization on CAT(0) cubical complexes

We consider geodesically convex optimization problems involving distances to a finite set of points A in a CAT(0) cubical complex. Examples include the minimum enclosing ball problem, the weighted mean and median problems, and the feasibility and projection problems for intersecting balls with centers in A. We propose a decomposition approach relying on standard Euclidean … Read more

Subgradient Convergence Implies Subdifferential Convergence on Weakly Convex Functions: With Uniform Rates Guarantees

In nonsmooth, nonconvex stochastic optimization, understanding the uniform convergence of subdifferential mappings is crucial for analyzing stationary points of sample average approximations of risk as they approach the population risk. Yet, characterizing this convergence remains a fundamental challenge. This work introduces a novel perspective by connecting the uniform convergence of subdifferential mappings to that of subgradient … Read more

Approaches to iterative algorithms for solving nonlinear equations with an application in tomographic absorption spectroscopy

In this paper we propose an approach for solving systems of nonlinear equations without computing function derivatives. Motivated by the application area of tomographic absorption spectroscopy, which is a highly-nonlinear problem with variables coupling, we consider a situation where straightforward translation to a fixed point problem is not possible because the operators that represent the … Read more

Understanding the Douglas-Rachford splitting method through the lenses of Moreau-type envelopes

We analyze the Douglas-Rachford splitting method for weakly convex optimization problems, by the token of the Douglas-Rachford envelope, a merit function akin to the Moreau envelope. First, we use epi-convergence techniques to show that this artifact approximates the original objective function via epigraphs. Secondly, we present how global convergence and local linear convergence rates for … Read more

The best approximation pair problem relative to two subsets in a normed space

In the classical best approximation pair (BAP) problem, one is given two nonempty, closed, convex and disjoint subsets in a finite- or an infinite-dimensional Hilbert space, and the goal is to find a pair of points, each from each subset, which realizes the distance between the subsets. This problem, which has a long history, has … Read more

Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation

We prove new convergence rates for a generalized version of stochastic Nesterov acceleration under interpolation conditions. Unlike previous analyses, our approach accelerates any stochastic gradient method which makes sufficient progress in expectation. The proof, which proceeds using the estimating sequences framework, applies to both convex and strongly convex functions and is easily specialized to accelerated … Read more

Horoballs and the subgradient method

To explore convex optimization on Hadamard spaces, we consider an iteration in the style of a subgradient algorithm. Traditionally, such methods assume that the underlying spaces are manifolds and that the objectives are geodesically convex: the methods are described using tangent spaces and exponential maps. By contrast, our iteration applies in a general Hadamard space, … Read more

Second-Order Strong Optimality and Second-Order Duality for Nonsmooth Constrained Multiobjective Fractional Programming Problems

This paper investigates constrained nonsmooth multiobjective fractional programming problem (NMFP) in real Banach spaces. It derives a quotient calculus rule for computing the first- and second-order Clarke derivatives of fractional functions involving locally Lipschitz functions. A novel second-order Abadie-type regularity condition is presented, defined with the help of the Clarke directional derivative and the P´ales-Zeidan … Read more

Slow convergence of the moment-SOS hierarchy for an elementary polynomial optimization problem

We describe a parametric univariate quadratic optimization problem for which the moment-SOS hierarchy has finite but increasingly slow convergence when the parameter tends to its limit value. We estimate the order of finite convergence as a function of the parameter. ArticleDownload View PDF