Uniqueness of Market Equilibrium on a Network: A Peak-Load Pricing Approach

In this paper we establish conditions under which uniqueness of market equilibrium is obtained in a setup where prior to trading of electricity, transmission capacities between different market regions are fixed. In our setup, firms facing fluctuating demand decide on the size and location of production facilities. They make production decisions constrained by the invested … Read more

On the solution uniqueness characterization in the L1 norm and polyhedral gauge recovery

This paper first proposes another proof of the \textit{necessary and sufficient conditions of solution uniqueness in 1-norm minimization} given recently by H. Zhang, W. Yin, and L. Cheng. The analysis avoids the need of the surjectivity assumption made by these authors and should be mainly appealing by its short length (it can therefore be proposed … Read more

Inertial Proximal ADMM for Linearly Constrained Separable Convex Optimization

The \emph{alternating direction method of multipliers} (ADMM) is a popular and efficient first-order method that has recently found numerous applications, and the proximal ADMM is an important variant of it. The main contributions of this paper are the proposition and the analysis of a class of inertial proximal ADMMs, which unify the basic ideas of … Read more

A general inertial proximal point algorithm for mixed variational inequality problem

In this paper, we first propose a general inertial \emph{proximal point algorithm} (PPA) for the mixed \emph{variational inequality} (VI) problem. Based on our knowledge, without stronger assumptions, convergence rate result is not known in the literature for inertial type PPAs. Under certain conditions, we are able to establish the global convergence and nonasymptotic $O(1/k)$ convergence … Read more

How to Reach his Desires: Variational Rationality and the Equilibrium Problem on Hadamard Manifolds

In this paper we present a sufficient condition for the existence of a solution for an \mbox{equilibrium} problem on an Hadamard manifold and under suitable assumptions on the sectional curvature, we \mbox{propose} a framework for the convergence analysis of a proximal point algorithm to solve this equilibrium \mbox{problem}. Finally, we offer an application to the … Read more

Borwein-Preiss Variational Principle Revisited

In this article, we refine and slightly strengthen the metric space version of the Borwein–Preiss variational principle due to Li, Shi, J. Math. Anal. Appl. 246, 308–319 (2000), clarify the assumptions and conclusions of their Theorem 1 as well as Theorem 2.5.2 in Borwein, Zhu, Techniques of Variational Analysis, Springer (2005) and streamline the proofs. … Read more

Linear Rate Convergence of the Alternating Direction Method of Multipliers for Convex Composite Quadratic and Semi-Definite Programming

In this paper, we aim to provide a comprehensive analysis on the linear rate convergence of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex composite optimization problems. Under a certain error bound condition, we establish the global linear rate of convergence for a more general semi-proximal ADMM with the dual steplength … Read more

Low-rank spectral optimization

Various applications in signal processing and machine learning give rise to highly structured spectral optimization problems characterized by low-rank solutions. Two important examples that motivate this work are optimization problems from phase retrieval and from blind deconvolution, which are designed to yield rank-1 solutions. An algorithm is described based solving a certain constrained eigenvalue optimization … Read more

On the Convergence of Multi-Block Alternating Direction Method of Multipliers and Block Coordinate Descent Method

The paper answers several open questions of the alternating direction method of multipliers (ADMM) and the block coordinate descent (BCD) method that are now wildly used to solve large scale convex optimization problems in many fields. For ADMM, it is still lack of theoretical understanding of the algorithm when the objective function is not separable … Read more

Semidefinite approximations of the polynomial abscissa

Given a univariate polynomial, its abscissa is the maximum real part of its roots. The abscissa arises naturally when controlling linear differential equations. As a function of the polynomial coefficients, the abscissa is H\”older continuous, and not locally Lipschitz in general, which is a source of numerical difficulties for designing and optimizing control laws. In … Read more