Recent Advances in Nonconvex Semi-infinite Programming: Applications and Algorithms

The goal of this literature review is to give an update on the recent developments for semi-infinite programs (SIPs), approximately over the last 20 years. An overview of the different solution approaches and the existing algorithms is given. We focus on deterministic algorithms for SIPs which do not make any convexity assumptions. In particular, we … Read more

Decomposing Optimization-Based Bounds Tightening Problems Via Graph Partitioning

Bounds tightening or domain reduction is a critical refinement technique used in global optimization algorithms for nonlinear and mixed-integer nonlinear programming problems. Bounds tightening can strengthen convex relaxations and reduce the size of branch and bounds trees. An effective but computationally intensive bounds tightening technique is optimization-based bounds tightening (OBBT). In OBBT, each variable is … Read more

TREGO: a Trust-Region Framework for Efficient Global Optimization

Efficient Global Optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of expensive-to-evaluate black-box problems. However, EGO struggles to scale with dimension, and offers limited theoretical guarantees. In this work, a trust-region framework for EGO (TREGO) is proposed and analyzed. TREGO alternates between regular EGO steps … Read more

Twenty years of continuous multiobjective optimization in the twenty-first century

The survey highlights some of the research topics which have attracted attention in the last two decades within the area of mathematical optimization of multiple objective functions. We give insights into topics where a huge progress can be seen within the last years. We give short introductions to the specific sub-fields as well as some … Read more

An Exact Projection-Based Algorithm for Bilevel Mixed-Integer Problems with Nonlinearities

We propose an exact global solution method for bilevel mixed-integer optimization problems with lower-level integer variables and including nonlinear terms such as, \eg, products of upper-level and lower-level variables. Problems of this type are extremely challenging as a single-level reformulation suitable for off-the-shelf solvers is not available in general. In order to solve these problems … Read more

Polyhedral Analysis of Symmetric Multilinear Polynomials over Box Constraints

It is well-known that the convex and concave envelope of a multilinear polynomial over a box are polyhedral functions. Exponential-sized extended and projected formulations for these envelopes are also known. We consider the convexification question for multilinear polynomials that are symmetric with respect to permutations of variables. Such a permutation-invariant structure naturally implies a quadratic-sized … Read more

EFIX: Exact Fixed Point Methods for Distributed Optimization

We consider strongly convex distributed consensus optimization over connected networks. EFIX, the proposed method, is derived using quadratic penalty approach. In more detail, we use the standard reformulation – transforming the original problem into a constrained problem in a higher dimensional space – to define a sequence of suitable quadratic penalty subproblems with increasing penalty … Read more

Homogeneous polynomials and spurious local minima on the unit sphere

We consider forms on the Euclidean unit sphere. We obtain obtain a simple and complete characterization of all points that satisfies the standard second-order necessary condition of optimality. It is stated solely in terms of the value of (i) f, (ii) the norm of its gradient, and (iii) the first two smallest eigenvalues of its … Read more

The Moment-SOS hierarchy and the Christoffel-Darboux kernel

We consider the global minimization of a polynomial on a compact set B. We show that each step of the Moment-SOS hierarchy has a nice and simple interpretation that complements the usual one. Namely, it computes coefficients of a polynomial in an orthonormal basis of $L^2(B,\mu)$ where $\mu$ is an arbitrary reference measure whose support … Read more

Compact mixed-integer programming relaxations in quadratic optimization

We present a technique for producing valid dual bounds for nonconvex quadratic optimization problems. The approach leverages an elegant piecewise linear approximation for univariate quadratic functions due to Yarotsky, formulating this (simple) approximation using mixed-integer programming (MIP). Notably, the number of constraints, binary variables, and auxiliary continuous variables used in this formulation grows logarithmically in … Read more