An Alternative Perspective on Copositive and Convex Relaxations of Nonconvex Quadratic Programs

We study convex relaxations of nonconvex quadratic programs. We identify a family of so-called feasibility preserving convex relaxations, which includes the well-known copositive and doubly nonnegative relaxations, with the property that the convex relaxation is feasible if and only if the nonconvex quadratic program is feasible. We observe that each convex relaxation in this family … Read more

K-Adaptability in stochastic optimization

We consider stochastic problems in which both the objective function and the feasible set are affected by uncertainty. We address these problems using a K-adaptability approach, in which K solutions for the underlying problem are computed before the uncertainty dissolves and afterwards the best of them can be chosen for the realised scenario. This paradigm … Read more

Convex Hull Representations for Bounded Products of Variables

It is well known that the convex hull of {(x,y,xy)}, where (x,y) is constrained to lie in a box, is given by the Reformulation-Linearization Technique (RLT) constraints. Belotti et al. (2010) and Miller et al. (2011) showed that if there are additional upper and/or lower bounds on the product z=xy, then the convex hull can … Read more

Shape-Constrained Regression using Sum of Squares Polynomials

We consider the problem of fitting a polynomial function to a set of data points, each data point consisting of a feature vector and a response variable. In contrast to standard polynomial regression, we require that the polynomial regressor satisfy shape constraints, such as monotonicity, Lipschitz-continuity, or convexity. We show how to use semidefinite programming … Read more

On monotonicity and search traversal in copositivity detection algorithms

Matrix copositivity has an important theoretical background. Over the last decades, the use of algorithms to check copositivity has made a big progress. Methods are based on spatial branch and bound, transformation to Mixed Integer Programming, implicit enumeration of KKT points or face-based search. Our research question focuses on exploiting the mathematical properties of the … Read more

A numerical study of transformed mixed-integer optimal control problems

Time transformation is a ubiquitous tool in theoretical sciences, especially in physics. It can also be used to transform switched optimal con trol problems into control problems with a fixed switching order and purely continuous decisions. This approach is known either as enhanced time transformation, time-scaling, or switching time optimization (STO) for mixed-integer optimal control. … Read more

Continuous Cubic Formulations for Cluster Detection Problems in Networks

The celebrated Motzkin-Straus formulation for the maximum clique problem provides a nontrivial characterization of the clique number of a graph in terms of the maximum value of a nonconvex quadratic function over a standard simplex. It was originally developed as a way of proving Tur\'{a}n’s theorem in graph theory, but was later used to develop … Read more

The Magic of Nash Social Welfare in Optimization: Do Not Sum, Just Multiply!

In this paper, we explain some key challenges when dealing with a single/multi-objective optimization problem in practice. To overcome these challenges, we present a mathematical program that optimizes a Nash Social Welfare function. We refer to this mathematical program as the Nash Social Welfare Program (NSWP). An interesting property of the NSWP is that it … Read more

Strong Relaxations for Continuous Nonlinear Programs Based on Decision Diagrams

Over the past decade, Decision Diagrams (DDs) have risen as a powerful modeling tool to solve discrete optimization problems. The extension of this emerging concept to continuous problems, however, has remained a challenge, posing a limitation on its applicability scope. In this paper, we introduce a novel framework that utilizes DDs to model continuous programs. … Read more

Optimization Problems Involving Matrix Multiplication with Applications in Material Science and Biology

We consider optimization problems involving the multiplication of variable matrices to be selected from a given family, which might be a discrete set, a continuous set or a combination of both. Such nonlinear, and possibly discrete, optimization problems arise in applications from biology and material science among others, and are known to be NP-Hard for … Read more