New multi-commodity flow formulations for the pooling problem

The pooling problem is a nonconvex nonlinear programming problem with numerous applications. The nonlinearities of the problem arise from bilinear constraints that capture the blending of raw materials. Bilinear constraints are well-studied and significant progress has been made in solving large instances of the pooling problem to global optimality. This is due in no small … Read more

Generic properties for semialgebraic programs

In this paper we study genericity for the following parameterized class of nonlinear programs: \begin{eqnarray*} \textrm{minimize } f_u(x) := f(x) – \langle u, x \rangle \quad \textrm{subject to } \quad x \in S, \end{eqnarray*} where $f \colon \mathbb{R}^n \rightarrow \mathbb{R}$ is a polynomial function and $S \subset \mathbb{R}^n$ is a closed semialgebraic set, which is … Read more

Stability and genericity for semi-algebraic compact programs

In this paper we consider the class of polynomial optimization problems with inequality and equality constraints, in which every problem of the class is obtained by perturbations of the objective function, while the constraint functions are kept fixed. Under certain assumptions, we establish some stability properties (e.g., strong H\”older stability with explicitly determined exponents, semicontinuity, … Read more

A Binarisation Heuristic for Non-Convex Quadratic Programming with Box Constraints

Non-convex quadratic programming with box constraints is a fundamental problem in the global optimization literature, being one of the simplest NP-hard nonlinear programs. We present a new heuristic for this problem, which enables one to obtain solutions of excellent quality in reasonable computing times. The heuristic consists of four phases: binarisation, convexification, branch-and-bound, and local … Read more

On the convergence rate of an inexact proximal point algorithm for quasiconvex minimization on Hadamard manifolds

In this paper we present a rate of convergence analysis of an inexact proximal point algorithm to solve minimization problems for quasiconvex objective functions on Hadamard manifolds. We prove that under natural assumptions the sequence generated by the algorithm converges linearly or superlinearly to a critical point of the problem. ArticleDownload View PDF

A mean-risk MINLP for transportation network protection

This paper focuses on transportation network protection to hedge against extreme events such as earthquakes. Traditional two-stage stochastic programming has been widely adopted to obtain solutions under a risk-neutral preference through the use of expectations in the recourse function. In reality, decision makers hold different risk preferences. We develop a mean-risk two-stage stochastic programming model … Read more

Relaxations and discretizations for the pooling problem

The pooling problem is a folklore NP-hard global optimization problem that finds applications in industries such as petrochemical refining, wastewater treatment, and mining. This paper assimilates the vast literature on this problem that is dispersed over different areas and gives unifying arguments and new insights on prevalent techniques. We also present new ideas for computing … Read more

Computational investigation of simple memetic approaches for continuous global optimization

In [Locatelli et al., 2014] a memetic approach, called MDE, for the solution of continuous global optimization problems, has been introduced and proved to be quite efficient in spite of its simplicity. In this paper we computationally investigate some variants of MDE. The investigation reveals that the best variant of MDE usually outperforms MDE itself, … Read more

Strong SOCP Relaxations for the Optimal Power Flow Problem

This paper proposes three strong second order cone programming (SOCP) relaxations for the AC optimal power flow (OPF) problem. These three relaxations are incomparable to each other and two of them are incomparable to the standard SDP relaxation of OPF. Extensive computational experiments show that these relaxations have numerous advantages over existing convex relaxations in … Read more

Some Applications of Polynomial Optimization in Operations Research and Real-Time Decision Making

We demonstrate applications of algebraic techniques that optimize and certify polynomial inequalities to problems of interest in the operations research and transportation engineering communities. Three problems are considered: (i) wireless coverage of targeted geographical regions with guaranteed signal quality and minimum transmission power, (ii) computing real-time certificates of collision avoidance for a simple model of … Read more