Stokes, Gibbs and volume computation of semi-algebraic sets

We consider the problem of computing the Lebesgue volume of compact basic semi-algebraic sets. In full generality, it can be approximated as closely as desired by a converging hierarchy of upper bounds obtained by applying the Moment-SOS (sums of squares) methodology to a certain infinite-dimensional linear program (LP). At each step one solves a semidefinite … Read more

The Strip Method for Shape Derivatives

A major challenge in shape optimization is the coupling of finite element method (FEM) codes in a way that facilitates efficient computation of shape derivatives. This is particularly difficult with multiphysics problems involving legacy codes, where the costs of implementing and maintaining shape derivative capabilities are prohibitive. The volume and boundary methods are two approaches … Read more

KKT Preconditioners for PDE-Constrained Optimization with the Helmholtz Equation

This paper considers preconditioners for the linear systems that arise from optimal control and inverse problems involving the Helmholtz equation. Specifically, we explore an all-at-once approach. The main contribution centers on the analysis of two block preconditioners. Variations of these preconditioners have been proposed and analyzed in prior works for optimal control problems where the … Read more

Optimal Learning for Structured Bandits

We study structured multi-armed bandits, which is the problem of online decision-making under uncertainty in the presence of structural information. In this problem, the decision-maker needs to discover the best course of action despite observing only uncertain rewards over time. The decision- maker is aware of certain structural information regarding the reward distributions and would … Read more

Binary Optimal Control by Trust-Region Steepest Descent

We present a trust-region steepest descent method for dynamic optimal control problems with binary-valued integrable control functions. Our method interprets the control function as an indicator function of a measurable set and makes set-valued adjustments derived from the sublevel sets of a topological gradient function. By combining this type of update with a trust-region framework, … Read more

Bridging Bayesian and Minimax Mean Square Error Estimation via Wasserstein Distributionally Robust Optimization

We introduce a distributionally robust minimium mean square error estimation model with a Wasserstein ambiguity set to recover an unknown signal from a noisy observation. The proposed model can be viewed as a zero-sum game between a statistician choosing an estimator—that is, a measurable function of the observation—and a fictitious adversary choosing a prior—that is, … Read more

Logarithmic-Barrier Decomposition Interior-Point Methods for Stochastic Linear Optimization in a Hilbert Space

Several logarithmic-barrier interior-point methods are now available for solving two-stage stochastic optimization problems with recourse in the finite-dimensional setting. However, despite the genuine need for studying such methods in general spaces, there are no infinite-dimensional analogs of these methods. Inspired by this evident gap in the literature, in this paper, we propose logarithmic-barrier decomposition-based interior-point … Read more

Generalized Conditional Gradient with Augmented Lagrangian for Composite Minimization

In this paper we propose a splitting scheme which hybridizes generalized conditional gradient with a proximal step which we call CGALP algorithm, for minimizing the sum of three proper convex and lower-semicontinuous functions in real Hilbert spaces. The minimization is subject to an affine constraint, that allows in particular to deal with composite problems (sum … Read more

On semi-infinite systems of convex polynomial inequalities and polynomial optimization problems

We consider the semi-infinite system of polynomial inequalities of the form \[ \mathbf{K}:=\{x\in\mathbb{R}^m\mid p(x,y)\ge 0,\ \ \forall y\in S\subseteq\mathbb{R}^n\}, \] where $p(X,Y)$ is a real polynomial in the variables $X$ and the parameters $Y$, the index set $S$ is a basic semialgebraic set in $\mathbb{R}^n$, $-p(X,y)$ is convex in $X$ for every $y\in S$. We … Read more

Volumetric barrier decomposition algorithms for two-stage stochastic linear semi-infinite programming

In this paper, we study the two-stage stochastic linear semi-infinite programming with recourse to handle uncertainty in data defining (deterministic) linear semi-infinite programming. We develop and analyze volumetric barrier decomposition-based interior point methods for solving this class of optimization problems, and present a complexity analysis of the proposed algorithms. We establish our convergence analysis by … Read more