The pseudo-Boolean polytope and polynomial-size extended formulations for binary polynomial optimization
Article Download View The pseudo-Boolean polytope and polynomial-size extended formulations for binary polynomial optimization
Article Download View The pseudo-Boolean polytope and polynomial-size extended formulations for binary polynomial optimization
\(\) We develop a new method called \emph{affine FR} for recovering Slater’s condition for semidefinite programming (SDP) relaxations of combinatorial optimization (CO) problems. Affine FR is a user-friendly method, as it is fully automatic and only requires a description of the problem. We provide a rigorous analysis of differences between affine FR and the existing … Read more
Conflict analysis has been successfully generalized from Boolean satisfiability (SAT) solving to mixed integer programming (MIP) solvers, but although MIP solvers operate with general linear inequalities, the conflict analysis in MIP has been limited to reasoning with the more restricted class of clausal constraint. This is in contrast to how conflict analysis is performed in … Read more
Robust combinatorial optimization with budget uncertainty is one of the most popular approaches for integrating uncertainty into optimization problems. The existence of a compact reformulation for (mixed-integer) linear programs and positive complexity results give the impression that these problems are relatively easy to solve. However, the practical performance of the reformulation is quite poor when … Read more
We consider semidefinite programming (SDP) approaches for solving the maximum satisfiabilityproblem (MAX-SAT) and the weighted partial MAX-SAT. It is widely known that SDP is well-suitedto approximate the (MAX-)2-SAT. Our work shows the potential of SDP also for other satisfiabilityproblems, by being competitive with some of the best solvers in the yearly MAX-SAT competition.Our solver combines … Read more
In this paper, we introduce semi-infinite generalized disjunctive programs that are defined by logical propositions along with disjunctions of sets of logical equations and infinite number of algebraic inequalities. We denote these programs by SIGDPs. For SIGDPs with linear and convex inequalities, we present new reformulations: semi-infinite mixed-binary/disjunctive linear programs and semi-infinite mixed-binary/disjunctive convex programs, … Read more
Article Download View A polynomial-size extended formulation for the multilinear polytope of beta-acyclic hypergraphs
DP is a complexity class that is the class of all languages that are the intersection of a language in NP and a language in co-NP, as coined by Papadimitriou and Yannakakis. In this paper, we will establish that, recognizing a facet for the knapsack polytope is DP-complete, as conjectured by Hartvigsen and Zemel in … Read more
Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB; a 1.48\% gap remains between the best known feasible objective value and lower bound of the unknown optimal value. This paper shows that the instance can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which … Read more
The objective of this paper is to develop a scalable binary linear programming model for finding the optimal aggregation of communes into spatially contiguous administrative territorial units (ATUs) constrained on certain balancing criteria. The requirement for the ATUs to be contiguous represents the main computational bottleneck and, therefore, it prevents one from using such models … Read more