Alternative Regularizations for OA Algorithms for Convex MINLP

In this work, we extend the regularization framework from Kronqvist et al. (https://doi.org/10.1007/s10107-018-1356-3) by incorporating several new regularization functions and develop a regularized single-tree search method for solving convex mixed-integer nonlinear programming (MINLP) problems. We propose a set of regularization functions based on distance-metrics and Lagrangean approximations, used in the projection problem for finding new … Read more

Inductive Linearization for Binary Quadratic Programs with Linear Constraints: A Computational Study

The computational performance of inductive linearizations for binary quadratic programs in combination with a mixed-integer programming solver is investigated for several combinatorial optimization problems and established benchmark instances. Apparently, a few of these are solved to optimality for the first time. Citationpreprint (no internal series / number): University of Bonn, Germany June 11, 2021ArticleDownload View … Read more

A Generic Optimization Framework for Resilient Systems

This paper addresses the optimal design of resilient systems, in which components can fail. The system can react to failures and its behavior is described by general mixed integer nonlinear programs, which allows for applications to many (technical) systems. This then leads to a three-level optimization problem. The upper level designs the system minimizing a … Read more

Retail Store Layout Optimization for Maximum Product Visibility

It is well-established that increased product visibility to shoppers leads to higher sales for retailers. In this study, we propose an optimization methodology which assigns product categories and subcategories to store locations and sublocations to maximize the overall visibility of products to shoppers. The methodology is hierarchically developed to meet strategic and tactical layout planning … Read more

A new perspective on low-rank optimization

A key question in many low-rank problems throughout optimization, machine learning, and statistics is to characterize the convex hulls of simple low-rank sets and judiciously apply these convex hulls to obtain strong yet computationally tractable convex relaxations. We invoke the matrix perspective function — the matrix analog of the perspective function — and characterize explicitly … Read more

Price Optimization with Practical Constraints

In this paper, we study a retailer price optimization problem which includes the practical constraints: maximum number of price changes and minimum amount of price change (if a change is recommended). We provide a closed-form formula for the Euclidean projection onto the feasible set defined by these two constraints, based on which a simple gradient … Read more

Exact algorithms for the 0-1 Time-bomb Knapsack Problem

We consider a stochastic version of the 0–1 Knapsack Problem in which, in addition to profit and weight, each item is associated with a probability of exploding and destroying all the contents of the knapsack. The objective is to maximize the expected profit of the selected items. The resulting problem, denoted as 0–1 Time-Bomb Knapsack … Read more

Characterizing Linearizable QAPs by the Level-1 Reformulation-Linearization Technique

The quadratic assignment problem (QAP) is an extremely challenging NP-hard combinatorial optimization program. Due to its difficulty, a research emphasis has been to identify special cases that are polynomially solvable. Included within this emphasis are instances which are linearizable; that is, which can be rewritten as a linear assignment problem having the property that the … Read more

Marketing Mix Optimization with Practical Constraints

In this paper, we address a variant of the marketing mix optimization (MMO) problem which is commonly encountered in many industries, e.g., retail and consumer packaged goods (CPG) industries. This problem requires the spend for each marketing activity, if adjusted, be changed by a non-negligible degree (minimum change) and also the total number of activities … Read more

A Computational Study of Perspective Cuts

The benefits of cutting planes based on the perspective function are well known for many specific classes of mixed-integer nonlinear programs with on/off structures. However, we are not aware of any empirical studies that evaluate their applicability and computational impact over large, heterogeneous test sets in general-purpose solvers. This paper provides a detailed computational study … Read more