Unbiased Subdata Selection for Fair Classification: A Unified Framework and Scalable Algorithms

As an important problem in modern data analytics, classification has witnessed varieties of applications from different domains. Different from conventional classification approaches, fair classification concerns the issues of unintentional biases against the sensitive features (e.g., gender, race). Due to high nonconvexity of fairness measures, existing methods are often unable to model exact fairness, which can … Read more

An Exact Projection-Based Algorithm for Bilevel Mixed-Integer Problems with Nonlinearities

We propose an exact global solution method for bilevel mixed-integer optimization problems with lower-level integer variables and including nonlinear terms such as, \eg, products of upper-level and lower-level variables. Problems of this type are extremely challenging as a single-level reformulation suitable for off-the-shelf solvers is not available in general. In order to solve these problems … Read more

Polyhedral Analysis of Symmetric Multilinear Polynomials over Box Constraints

It is well-known that the convex and concave envelope of a multilinear polynomial over a box are polyhedral functions. Exponential-sized extended and projected formulations for these envelopes are also known. We consider the convexification question for multilinear polynomials that are symmetric with respect to permutations of variables. Such a permutation-invariant structure naturally implies a quadratic-sized … Read more

An Alternating Method for Cardinality-Constrained Optimization: A Computational Study for the Best Subset Selection and Sparse Portfolio Problems

Cardinality-constrained optimization problems are notoriously hard to solve both in theory and practice. However, as famous examples such as the sparse portfolio optimization and best subset selection problems show, this class is extremely important in real-world applications. In this paper, we apply a penalty alternating direction method to these problems. The key idea is to … Read more

Compact mixed-integer programming relaxations in quadratic optimization

We present a technique for producing valid dual bounds for nonconvex quadratic optimization problems. The approach leverages an elegant piecewise linear approximation for univariate quadratic functions due to Yarotsky, formulating this (simple) approximation using mixed-integer programming (MIP). Notably, the number of constraints, binary variables, and auxiliary continuous variables used in this formulation grows logarithmically in … Read more

Spectral relaxations and branching strategies for global optimization of mixed-integer quadratic programs

We consider the global optimization of nonconvex quadratic programs and mixed-integer quadratic programs. We present a family of convex quadratic relaxations which are derived by convexifying nonconvex quadratic functions through perturbations of the quadratic matrix. We investigate the theoretical properties of these quadratic relaxations and show that they are equivalent to some particular semidefinite programs. … Read more

Matching Algorithms and Complexity Results for Constrained Mixed-Integer Optimal Control with Switching Costs

We extend recent work on the performance of the combinatorial integral approximation decomposition approach for Mixed-Integer Optimal Control Problems (MIOCPs) in the presence of combinatorial constraints or switching costs on an equidistant grid. For the time discretized problem, we reformulate the emerging rounding problem in the decomposition approach as a matching problem on a bipartite … Read more

Feasible rounding approaches for equality constrained mixed-integer optimization problems

A feasible rounding approach is a novel technique to compute good feasible points for mixed-integer optimization problems. The central idea of this approach is the construction of a continuously described inner parallel set for which any rounding of any of its elements is feasible in the original mixed-integer problem. It is known that this approach … Read more

The Bipartite Boolean Quadric Polytope with Multiple-Choice Constraints

We consider the bipartite boolean quadric polytope (BQP) with multiple-choice constraints and analyse its combinatorial properties. The well-studied BQP is defined as the convex hull of all quadric incidence vectors over a bipartite graph. In this work, we study the case where there is a partition on one of the two bipartite node sets such … Read more

Solving AC Optimal Power Flow with Discrete Decisions to Global Optimality

We present a solution framework for general alternating current optimal power flow (AC OPF) problems that include discrete decisions. The latter occur, for instance, in the context of the curtailment of renewables or the switching of power generation units and transmission lines. Our approach delivers globally optimal solutions and is provably convergent. We model AC … Read more