Maximizing the storage capacity of gas networks: a global MINLP approach

In this paper, we study the transient optimization of gas networks, focusing in particular on maximizing the storage capacity of the network. We include nonlinear gas physics and active elements such as valves and compressors, which due to their switching lead to discrete decisions. The former is described by a model derived from the Euler … Read more

On the impact of running intersection inequalities for globally solving polynomial optimization problems

We consider global optimization of nonconvex problems whose factorable reformulations contain a collection of multilinear equations. Important special cases include multilinear and polynomial optimization problems. The multilinear polytope is the convex hull of a set of binary points satisfying a number of multilinear equations. Running intersection inequalities are a family of facet-defining inequalities for the … Read more

The Supporting Hyperplane Optimization Toolkit

In this paper, an open source solver for mixed-integer nonlinear programming (MINLP) problems is presented. The Supporting Hyperplane Optimization Toolkit (SHOT) combines a dual strategy based on polyhedral outer approximations (POA) with primal heuristics. The outer approximation is achieved by expressing the nonlinear feasible set of the MINLP problem with linearizations obtained with the extended … Read more

Data-Driven Chance Constrained Programs over Wasserstein Balls

We provide an exact deterministic reformulation for data-driven chance constrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the $1$-norm or the $\infty$-norm, the cone is the nonnegative … Read more

Multi-stage Stochastic Programming for Demand Response Optimization

The increase in the energy consumption puts pressure on natural resources and environment and results in a rise in the price of energy. This motivates residents to schedule their energy consumption through demand response mechanism. We propose a multi-stage stochastic programming model to schedule different kinds of electrical appliances under uncertain weather conditions and availability … Read more

A Review and Comparison of Solvers for Convex MINLP

In this paper, we present a review of deterministic software for solving convex MINLP problems as well as a comprehensive comparison of a large selection of commonly available solvers. As a test set, we have used all MINLP instances classified as convex in the problem library MINLPLib, resulting in a test set of 366 convex … Read more

Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs

In this paper, we derive (partial) convex hull for deterministic multi-constraint polyhedral conic mixed integer sets with multiple integer variables using conic mixed integer rounding (CMIR) cut-generation procedure of Atamtürk and Narayanan (Math Prog 122:1–20, 2008), thereby extending their result for a simple polyhedral conic mixed integer set with single constraint and one integer variable. … Read more

On decomposability of the multilinear polytope and its implications in mixed-integer nonlinear optimization

In this article, we provide an overview of some of our recent results on the facial structure of the multilinear polytope with a special focus on its decomposability properties. Namely, we demonstrate that, in the context of mixed-integer nonlinear optimization, the decomposability of the multilinear polytope plays a key role from both theoretical and algorithmic … Read more

Strong formulations for conic quadratic optimization with indicator variables

We study the convex hull of the mixed-integer set given by a conic quadratic inequality and indicator variables. Conic quadratic terms are often used to encode uncertainties, while the indicator variables are used to model fixed costs or enforce sparsity in the solutions. We provide the convex hull description of the set under consideration when … Read more

The Cost of Not Knowing Enough: Mixed-Integer Optimization with Implicit Lipschitz Nonlinearities

It is folklore knowledge that nonconvex mixed-integer nonlinear optimization problems can be notoriously hard to solve in practice. In this paper we go one step further and drop analytical properties that are usually taken for granted in mixed-integer nonlinear optimization. First, we only assume Lipschitz continuity of the nonlinear functions and additionally consider multivariate implicit … Read more