New solution approaches for the maximum-reliability stochastic network interdiction problem

We investigate methods to solve the maximum-reliability stochastic network interdiction problem (SNIP). In this problem, a defender interdicts arcs on a directed graph to minimize an attacker’s probability of undetected traversal through the network. The attacker’s origin and destination are unknown to the defender and assumed to be random. SNIP can be formulated as a … Read more

Electric Power Infrastructure Planning: Mixed-Integer Programming Model and Nested Decomposition Algorithm

This paper addresses the long-term planning of electric power infrastructures considering high renewable penetration. To capture the intermittency of these sources, we propose a deterministic multi-scale Mixed-Integer Linear Programming (MILP) formulation that simultaneously considers annual generation investment decisions and hourly operational decisions. We adopt judicious approximations and aggregations to improve its tractability. Moreover, to overcome … Read more

Integer Optimization with Penalized Fractional Values: The Knapsack Case

We consider integer optimization problems where variables can potentially take fractional values, but this occurrence is penalized in the objective function. This general situation has relevant examples in scheduling (preemption), routing (split delivery), cutting and telecommunications, just to mention a few. However, the general case in which variables integrality can be relaxed at cost of … Read more

Glider Routing and Trajectory Optimisation in Disaster Assessment

In this paper, we introduce the Glider Routing and Trajectory Optimisation Problem (GRTOP), the problem of finding simultaneously optimal routes and trajectories for a fleet of gliders with the aim of surveying a set of locations. We propose a novel Mixed-Integer Nonlinear Programming (MINLP) formulation for the GRTOP, which simultaneously optimises the routes as well … Read more

Algorithmic Results for Potential-Based Flows: Easy and Hard Cases

Potential-based flows are an extension of classical network flows in which the flow on an arc is determined by the difference of the potentials of its incident nodes. Such flows are unique and arise, for example, in energy networks. Two important algorithmic problems are to determine whether there exists a feasible flow and to maximize … Read more

Robust Combinatorial Optimization under Budgeted-Ellipsoidal Uncertainty

In the field of robust optimization uncertain data is modeled by uncertainty sets, i.e. sets which contain all relevant outcomes of the uncertain parameters. The complexity of the related robust problem depends strongly on the shape of the uncertainty set. Two popular classes of uncertainty are budgeted uncertainty and ellipsoidal uncertainty. In this paper we … Read more

Nonconvex piecewise linear functions: Advanced formulations and simple modeling tools

We present novel mixed-integer programming (MIP) formulations for (nonconvex) piecewise linear functions. Leveraging recent advances in the systematic construction of MIP formulations for disjunctive sets, we derive new formulations for univariate functions using a geometric approach, and for bivariate functions using a combinatorial approach. All formulations derived are small (logarithmic in the number of piecewise … Read more

Mathematical models for Multi Container Loading Problems with practical constraints

We address the multi container loading problem of a company that has to serve its customers by first putting the products on pallets and then loading the pallets into trucks. We approach the problem by developing and solving integer linear models. To be useful in practice, our models consider three types of constraints: geometric constraints, … Read more

Four good reasons to use an Interior Point solver within a MIP solver

“Interior point algorithms are a good choice for solving pure LPs or QPs, but when you solve MIPs, all you need is a dual simplex.” This is the common conception which disregards that an interior point solution provides some unique structural insight into the problem at hand. In this paper, we will discuss some of … Read more

Facets of a mixed-integer bilinear covering set with bounds on variables

We derive a closed form description of the convex hull of mixed-integer bilinear covering set with bounds on the integer variables. This convex hull description is determined by considering some orthogonal disjunctive sets defined in a certain way. This description does not introduce any new variables, but consists of exponentially many inequalities. An extended formulation … Read more