The unrooted set covering connected subgraph problem differentiating between HIV envelope sequences

This paper presents a novel application of operations research techniques to the analysis of HIV env gene sequences, aiming to identify key features that are possible vaccine targets. These targets are identified as being critical to the transmission of HIV by being present in early transmitted (founder) sequences and absent in later chronic sequences. Identifying … Read more

How to Convexify the Intersection of a Second Order Cone and a Nonconvex Quadratic

A recent series of papers has examined the extension of disjunctive-programming techniques to mixed-integer second-order-cone programming. For example, it has been shown—by several authors using different techniques—that the convex hull of the intersection of an ellipsoid, $\E$, and a split disjunction, $(l – x_j)(x_j – u) \le 0$ with $l < u$, equals the intersection ... Read more

A Cut-and-Branch Algorithm for the Quadratic Knapsack Problem

The Quadratic Knapsack Problem (QKP) is a well-known NP-hard combinatorial optimisation problem, with many practical applications. We present a ‘cut-and-branch’ algorithm for the QKP, in which a cutting-plane phase is followed by a branch-and-bound phase. The cutting-plane phase is more sophisticated than the existing ones in the literature, incorporating several classes of cutting planes, two … Read more

A new mixed integer linear programming formulation for one problem of exploration of online social networks

Enormous global popularity of online social network sites has initiated numerous studies and methods investigating different aspects of their use, so some concepts from network-based studies in optimization theory can be used for research into online networks. In Gaji\’c (2014) are given a several new mixed integer linear programming formulations for first and second problem … Read more

How Good Are Sparse Cutting-Planes?

Sparse cutting-planes are often the ones used in mixed-integer programing (MIP) solvers, since they help in solving the linear programs encountered during branch-\&-bound more efficiently. However, how well can we approximate the integer hull by just using sparse cutting-planes? In order to understand this question better, given a polyope $P$ (e.g. the integer hull of … Read more

Chance-Constrained Multi-Terminal Network Design Problems

We consider a reliable network design problem under uncertain edge failures. Our goal is to select a minimum-cost subset of edges in the network to connect multiple terminals together with high probability. This problem can be seen as a stochastic variant of the Steiner tree problem. We propose a scenario-based Steiner cut formulation, and a … Read more

Distributionally Robust Discrete Optimization with Entropic Value-at-Risk

We study the discrete optimization problem under the distributionally robust framework. We optimize the Entropic Value-at-Risk, which is a coherent risk measure and is also known as Bernstein approximation for the chance constraint. We propose an efficient approximation algorithm to resolve the problem via solving a sequence of nominal problems. The computational results show that … Read more

Two-Term Disjunctions on the Second-Order Cone

Balas introduced disjunctive cuts in the 1970s for mixed-integer linear programs. Several recent papers have attempted to extend this work to mixed-integer conic programs. In this paper we study the structure of the convex hull of a two-term disjunction applied to the second-order cone, and develop a methodology to derive closed-form expressions for convex inequalities … Read more

A several new mixed integer linear programming formulations for exploration of online social networks

The goal of this paper is to identify the most promising sets of closest assignment constraints from the literature, in order to improve mixed integer linear programming formulations for exploration of information flow within a social network. The direct comparison between proposed formulations is performed on standard single source capacitated facility location problem instances. Therefore, … Read more

Improving the integer L-shaped method

We consider the integer L-shaped method for two-stage stochastic integer programs. To improve the performance of the algorithm, we present and combine two strategies. First, to avoid time-consuming exact evaluations of the second-stage cost function, we propose a simple modification that alternates between linear and mixed-integer subproblems. Then, to better approximate the shape of the … Read more