An Overview on Mathematical Programming Approaches for the Deterministic Unit Commitment Problem in Hydro Valleys

With the fast-growing demand in the electricity market of the last decades, attention has been focused on alternative and flexible sources of energy such as hydro valleys. Managing the hydroelectricity produced by the plants in hydro valleys is called the hydro unit commitment problem. This problem consists in finding the optimal power production schedule of … Read more

A polyhedral study of binary polynomial programs

We study the polyhedral convex hull of a mixed-integer set S defined by a collection of multilinear equations over the 0-1-cube. Such sets appear frequently in the factorable reformulation of mixed-integer nonlinear optimization problems. In particular, the set S represents the feasible region of a linearized unconstrained binary polynomial optimization problem. We define an equivalent … Read more

A Fast Branch-and-Bound Algorithm for Non-convex Quadratic Integer Optimization Subject To Linear Constraints Using Ellipsoidal Relaxations

We propose two exact approaches for non-convex quadratic integer minimization subject to linear constraints where lower bounds are computed by considering ellipsoidal relaxations of the feasible set. In the first approach, we intersect the ellipsoids with the feasible linear subspace. In the second approach we penalize exactly the linear constraints. We investigate the connection between … Read more

A Polyhedral Study of Two-Period Relaxations for Big-Bucket Lot-Sizing Problems: Zero Setup Case

In this paper, we investigate the two-period subproblems proposed by Akartunal{\i} et al. (2014) for big-bucket lot-sizing problems, which have shown a great potential for obtaining strong bounds for these problems. In particular, we study the polyhedral structure of the mixed integer sets related to two relaxations of these subproblems for the special case of … Read more

Lower bounding procedure for the Asymmetric Quadratic Traveling Salesman Problem

In this paper we consider the Asymmetric Quadratic Traveling Salesman Problem. Given a directed graph and a function that maps every pair of consecutive arcs to a cost, the problem consists in finding a cycle that visits every vertex exactly once and such that the sum of the costs is minimum. We propose an extended … Read more

Submodular Minimization in the Context of Modern LP and MILP Methods and Solvers

We consider the application of mixed-integer linear programming (MILP) solvers to the minimization of submodular functions. We evaluate common large-scale linear-programming (LP) techniques (e.g., column generation, row generation, dual stabilization) for solving a LP reformulation of the submodular minimization (SM) problem. We present heuristics based on the LP framework and a MILP solver. We evaluated … Read more

LP formulations for mixed-integer polynomial optimization problems

We present polynomial-time algorithms for constrained optimization problems overwhere the intersection graph of the constraint set has bounded tree-width. In the case of binary variables we obtain exact, polynomial-size linear programming formulations for the problem. In the mixed-integer case with bounded variables we obtain polynomial-size linear programming representations that attain guaranteed optimality and feasibility bounds. … Read more

Quadratic Cone Cutting Surfaces for Quadratic Programs with On-Off Constraints

We study the convex hull of a set arising as a relaxation of difficult convex mixed integer quadratic programs (MIQP). We characterize the extreme points of our set and the extreme points of its continuous relaxation. We derive four quadratic cutting surfaces that improve the strength of the continuous relaxation. Each of the cutting surfaces … Read more

Extended Formulations in Mixed Integer Conic Quadratic Programming

In this paper we consider the use of extended formulations in LP-based algorithms for mixed integer conic quadratic programming (MICQP). Extended formulations have been used by Vielma, Ahmed and Nemhauser (2008) and Hijazi, Bonami and Ouorou (2013) to construct algorithms for MICQP that can provide a significant computational advantage. The first approach is based on … Read more

Obtaining Lower Bounds from the Progressive Hedging Algorithm for Stochastic Mixed-Integer Programs

We present a method for computing lower bounds in the Progressive Hedging Algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using … Read more