How Good Are Sparse Cutting-Planes?

Sparse cutting-planes are often the ones used in mixed-integer programing (MIP) solvers, since they help in solving the linear programs encountered during branch-\&-bound more efficiently. However, how well can we approximate the integer hull by just using sparse cutting-planes? In order to understand this question better, given a polyope $P$ (e.g. the integer hull of … Read more

Chance-Constrained Multi-Terminal Network Design Problems

We consider a reliable network design problem under uncertain edge failures. Our goal is to select a minimum-cost subset of edges in the network to connect multiple terminals together with high probability. This problem can be seen as a stochastic variant of the Steiner tree problem. We propose a scenario-based Steiner cut formulation, and a … Read more

Distributionally Robust Discrete Optimization with Entropic Value-at-Risk

We study the discrete optimization problem under the distributionally robust framework. We optimize the Entropic Value-at-Risk, which is a coherent risk measure and is also known as Bernstein approximation for the chance constraint. We propose an efficient approximation algorithm to resolve the problem via solving a sequence of nominal problems. The computational results show that … Read more

Two-Term Disjunctions on the Second-Order Cone

Balas introduced disjunctive cuts in the 1970s for mixed-integer linear programs. Several recent papers have attempted to extend this work to mixed-integer conic programs. In this paper we study the structure of the convex hull of a two-term disjunction applied to the second-order cone, and develop a methodology to derive closed-form expressions for convex inequalities … Read more

A several new mixed integer linear programming formulations for exploration of online social networks

The goal of this paper is to identify the most promising sets of closest assignment constraints from the literature, in order to improve mixed integer linear programming formulations for exploration of information flow within a social network. The direct comparison between proposed formulations is performed on standard single source capacitated facility location problem instances. Therefore, … Read more

Improving the integer L-shaped method

We consider the integer L-shaped method for two-stage stochastic integer programs. To improve the performance of the algorithm, we present and combine two strategies. First, to avoid time-consuming exact evaluations of the second-stage cost function, we propose a simple modification that alternates between linear and mixed-integer subproblems. Then, to better approximate the shape of the … Read more

How important are branching decisions: fooling MIP solvers

We show the importance of selecting good branching variables by exhibiting a family of instances for which an optimal solution is both trivial to find and provably optimal by a fixed-size branch-and-bound tree, but for which state-of-the-art Mixed Integer Programming solvers need an increasing amount of resources. The instances encode the edge-coloring problem on a … Read more

Unifying semidefinite and set-copositive relaxations of binary problems and randomization techniques

A reformulation of quadratically constrained binary programs as duals of set-copositive linear optimization problems is derived using either \(\{0,1\}\)-formulations or \(\{-1,1\}\)-formulations. The latter representation allows an extension of the randomization technique by Goemans and Williamson. An application to the max-clique problem shows that the max-clique problem is equivalent to a linear program over the max-cut … Read more

A Note on Linear On/Off Constraints

This note studies compact representations of linear on/off constraints in mixed-integer linear optimization. A characterization of the convex hull of linear disjunctions is given in the space of original variables. This result can improve formulations of mixed-integer linear programs featuring on/off constraints by reducing the integrality gap in a Branch and Bound approach. Citation@article{, year={2014}, … Read more

Chance Constrained Mixed Integer Program: Bilinear and Linear Formulations, and Benders Decomposition

In this paper, we study chance constrained mixed integer program with consideration of recourse decisions and their incurred cost, developed on a finite discrete scenario set. Through studying a non-traditional bilinear mixed integer formulation, we derive its linear counterparts and show that they could be stronger than existing linear formulations. We also develop a variant … Read more