The Stochastic Pseudo-Star Degree Centrality Problem

We introduce the stochastic pseudo-star degree centrality problem, which focuses on a novel probabilistic group-based centrality metric. The goal is to identify a feasible induced pseudo-star, which is defined as a collection of nodes forming a star network with a certain probability, such that it maximizes the sum of the individual probabilities of unique assignments … Read more

A new perspective on low-rank optimization

A key question in many low-rank problems throughout optimization, machine learning, and statistics is to characterize the convex hulls of simple low-rank sets and judiciously apply these convex hulls to obtain strong yet computationally tractable convex relaxations. We invoke the matrix perspective function — the matrix analog of the perspective function — and characterize explicitly … Read more

Beyond Symmetry: Best Submatrix Selection for the Sparse Truncated SVD

Truncated singular value decomposition (SVD), also known as the best low-rank matrix approximation, has been successfully applied to many domains such as biology, healthcare, and others, where high-dimensional datasets are prevalent. To enhance the interpretability of the truncated SVD, sparse SVD (SSVD) is introduced to select a few rows and columns of the original matrix … Read more

Total Coloring and Total Matching: Polyhedra and Facets

A total coloring of a graph G = (V, E) is an assignment of colors to vertices and edges such that neither two adjacent vertices nor two incident edges get the same color, and, for each edge, the end-points and the edge itself receive a different color. Any valid total coloring induces a partition of … Read more

A Separation Algorithm for the Simple Plant Location Problem

The Simple Plant Location Problem (SPLP) is a well-known NP-hard optimisation problem with applications in logistics. Although many families of facet-defining inequalities are known for the associated polyhedron, very little work has been done on separation algorithms. We present the first ever polynomial-time separation algorithm for the SPLP that separates exactly over an exponentially large … Read more

A MILP Approach to DRAM Access Worst-Case Analysis

The Dynamic Random Access Memory (DRAM) is among the major points of contention in multi-core systems. We consider a challenging optimization problem arising in worst-case performance analysis of systems architectures: computing the worst-case delay (WCD) experienced when accessing the DRAM due to the interference of contending requests. The WCD is a crucial input for micro-architectural … Read more

Integer Programming Methods for Solving Binary Interdiction Games

This paper studies a general class of interdiction problems in which the solution space of both the leader and follower are characterized by two discrete sets denoted the leader’s strategy set and the follower’s structure set. In this setting, the interaction between any strategy-structure pair is assumed to be binary, in the sense that the … Read more

SOS-SDP: an Exact Solver for Minimum Sum-of-Squares Clustering

The minimum sum-of-squares clustering problem (MSSC) consists in partitioning n observations into k clusters in order to minimize the sum of squared distances from the points to the centroid of their cluster. In this paper, we propose an exact algorithm for the MSSC problem based on the branch-and-bound technique. The lower bound is computed by … Read more

Political districting to minimize cut edges

When constructing political districting plans, prominent criteria include population balance, contiguity, and compactness. The compactness of a districting plan, which is often judged by the “eyeball test,” has been quantified in many ways, e.g., Length-Width, Polsby-Popper, and Moment-of-Inertia. This paper considers the number of cut edges, which has recently gained traction in the redistricting literature … Read more

Price Optimization with Practical Constraints

In this paper, we study a retailer price optimization problem which includes the practical constraints: maximum number of price changes and minimum amount of price change (if a change is recommended). We provide a closed-form formula for the Euclidean projection onto the feasible set defined by these two constraints, based on which a simple gradient … Read more