The MIP Workshop 2023 Computational Competition on Reoptimization

This paper describes the computational challenge developed for a computational competition held in 2023 for the 20th anniversary of the Mixed Integer Programming Workshop. The topic of this competition was reoptimization, also known as warm starting, of mixed integer linear optimization problems after slight changes to the input data for a common formulation. The challenge … Read more

Adjustable robust optimization for fleet sizing problem in closed-loop supply chains with simultaneous delivery and pickup

The Fleet Sizing Problem (FSP) stands as a critical challenge within the realm of logistics and supply chain management, particularly in the context of Closed-Loop Supply Chains (CLSC). The significance of addressing the FSP lies in its direct impact on operational costs, resource utilization, and environmental sustainability. By effectively optimizing fleet size, organizations can streamline … Read more

The SCIP Optimization Suite 9.0

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization, centered around the constraint integer programming (CIP) framework SCIP. This report discusses the enhancements and extensions included in the SCIP Optimization Suite 9.0. The updates in SCIP 9.0 include improved symmetry handling, additions and improvements of nonlinear handlers and primal heuristics, a … Read more

Distributed Task Assignment in a Swarm of UAVs

We consider the problem of distributed task assignment in a swarm of Unmanned Aerial Vehicles (UAVs), where heterogeneous agents that can have different capabilities need to work in teams to execute tasks. We consider the case where communication between UAVs is costly or dangerous and should be limited or avoided, while individual UAVs have uncertain … Read more

Binary Integer Program Reformulation: A Set System Approximation Approach

This paper presents a generic reformulation framework for binary integer programs (BIPs) that does not impose additional specifications on the objective function or constraints. To enable this generality, we introduce a set system approximation theory designed to identify the tightest inner and outer approximations for any binary solution space using special types of set systems. … Read more

On Coupling Constraints in Linear Bilevel Optimization

It is well-known that coupling constraints in linear bilevel optimization can lead to disconnected feasible sets, which is not possible without coupling constraints. However, there is no difference between linear bilevel problems with and without coupling constraints w.r.t. their complexity-theoretical hardness. In this note, we prove that, although there is a clear difference between these … Read more

Solution methods for partial inverse combinatorial optimization problems in which weights can only be increased

Partial inverse combinatorial optimization problems are bilevel optimization problems in which the leader aims to incentivize the follower to include a given set of elements in the solution of their combinatorial problem. If the set of required elements defines a complete follower solution, the inverse combinatorial problem is solvable in polynomial time as soon as … Read more

On the power of linear programming for K-means clustering

In a previous work, we introduced a new linear programming (LP) relaxation for K-means clustering. In this paper, we further investigate the theoretical properties of this relaxation. We focus on K-means clustering with two clusters, which is an NP-hard problem. As evident from our numerical experiments with both synthetic and real-world data sets, the proposed … Read more

Branch and Price for the Length-Constrained Cycle Partition Problem

The length-constrained cycle partition problem (LCCP) is a graph optimization problem in which a set of nodes must be partitioned into a minimum number of cycles. Every node is associated with a critical time and the length of every cycle must not exceed the critical time of any node in the cycle. We formulate LCCP … Read more

Robust support vector machines via conic optimization

We consider the problem of learning support vector machines robust to uncertainty. It has been established in the literature that typical loss functions, including the hinge loss, are sensible to data perturbations and outliers, thus performing poorly in the setting considered. In contrast, using the 0-1 loss or a suitable non-convex approximation results in robust … Read more