The Rotational Dimension of a Graph

Given a connected graph $G=(N,E)$ with node weights $s\in\R^N_+$ and nonnegative edge lengths, we study the following embedding problem related to an eigenvalue optimization problem over the second smallest eigenvalue of the (scaled) Laplacian of $G$: Find $v_i\in\R^{|N|}$, $i\in N$ so that distances between adjacent nodes do not exceed prescribed edge lengths, the weighted barycenter … Read more

Dynamic Evolution for Risk-Neutral Densities

Option price data is often used to infer risk-neutral densities for future prices of an underlying asset. Given the prices of a set of options on the same underlying asset with different strikes and maturities, we propose a nonparametric approach for estimating the evolution of the risk-neutral density in time. Our method uses bicubic splines … Read more

A globally convergent primal-dual interior-point 3D filter method for nonlinear SDP

This paper proposes a primal-dual interior-point filter method for nonlinear semidefinite programming, which is the first multidimensional (three-dimensional) filter methods for interior-point methods, and of course for constrained optimization. A freshly new definition of filter entries is proposed, which is greatly different from those in all the current filter methods. A mixed norm is used … Read more

Exploiting special structure in semidefinite programming: a survey of theory and applications

Semidefinite Programming (SDP) may be seen as a generalization of Linear Programming (LP). In particular, one may extend interior point algorithms for LP to SDP, but it has proven much more difficult to exploit structure in the SDP data during computation. We survey three types of special structure in SDP data: 1) a common `chordal’ … Read more

A Linear Programming Approach for the Least-Squares Protein Morphing Problem

This work addresses the computation of free-energy di fferences between protein conformations by using morphing (i.e., transformation) of a source conformation into a target conformation. To enhance the morph- ing procedure, we employ permutations of atoms; we transform atom n in the source conformation into atom \sigma(n) in the target conformation rather than directly transforming atom … Read more

Lecture notes: Semidefinite programs and harmonic analysis

Lecture notes for the tutorial at the workshop HPOPT 2008 – 10th International Workshop on High Performance Optimization Techniques (Algebraic Structure in Semidefinite Programming), June 11th to 13th, 2008, Tilburg University, The Netherlands. Citation arXiv:0809.2017v1 [math.OC] Article Download View Lecture notes: Semidefinite programs and harmonic analysis

Gradient based method for cone programming with application to large-scale compressed sensing

In this paper, we study a gradient based method for general cone programming (CP) problems. In particular, we first consider four natural primal-dual convex smooth minimization reformulations for them, and then discuss a variant of Nesterov’s smooth (VNS) method recently proposed by Tseng [30] for solving these reformulations. The associated worst-case major arithmetic operations costs … Read more

Quadratic regularizations in an interior-point method for primal block-angular problems

One of the most efficient interior-point methods for some classes of primal block-angular problems solves the normal equations by a combination of Cholesky factorizations and preconditioned conjugate gradient for, respectively, the block and linking constraints. Its efficiency depends on the spectral radius—in [0,1)—of a certain matrix in the definition of the preconditioner. Spectral radius close … Read more

An SDP-based divide-and-conquer algorithm for large scale noisy anchor-free graph realization

We propose the DISCO algorithm for graph realization in $\real^d$, given sparse and noisy short-range inter-vertex distances as inputs. Our divide-and-conquer algorithm works as follows. When a group has a sufficiently small number of vertices, the basis step is to form a graph realization by solving a semidefinite program. The recursive step is to break … Read more

A new library of structured semidefinite programming instances

Solvers for semidefinite programming (SDP) have evolved a great deal in the last decade, and their development continues. In order to further support and encourage this development, we present a new test set of SDP instances. These instances arise from recent applications of SDP in coding theory, computational geometry, graph theory and structural design. Most … Read more