A gradient-based approach for computing Nash equilibria of large sequential games

We propose a new gradient based scheme to approximate Nash equilibria of large sequential two-player, zero-sum games. The algorithm uses modern smoothing techniques for saddle-point problems tailored specifically for the polytopes used in the Nash equilibrium problem. CitationWorking Paper, Tepper School of Business, Carnegie Mellon UniversityArticleDownload View PDF

Symmetry in semidefinite programs

This paper is a tutorial in a general and explicit procedure to simplify semidefinite programming problems which are invariant under the action of a group. The procedure is based on basic notions of representation theory of finite groups. As an example we derive the block diagonalization of the Terwilliger algebra in this framework. Here its … Read more

Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization

The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, … Read more

A strong conic quadratic reformulation for machine-job assignment with controllable processing times

We describe a polynomial-size conic quadratic reformulation for a machine-job assignment problem with separable convex cost. Because the conic strengthening is based on only the objective of the problem, it can also be applied to other problems with similar cost functions. Computational results demonstrate the effectiveness of the conic reformulation. CitationAppeared in Operations Research Letters. … Read more

Semidefinite Representation of Convex Sets

Let $S =\{x\in \re^n:\, g_1(x)\geq 0, \cdots, g_m(x)\geq 0\}$ be a semialgebraic set defined by multivariate polynomials $g_i(x)$. Assume $S$ is convex, compact and has nonempty interior. Let $S_i =\{x\in \re^n:\, g_i(x)\geq 0\}$, and $\bdS$ (resp. $\bdS_i$) be the boundary of $S$ (resp. $S_i$). This paper, as does the subject of semidefinite programming (SDP), concerns … Read more

Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem

We consider semidefinite programming relaxations of the quadratic assignment problem, and show how to exploit group symmetry in the problem data. Thus we are able to compute the best known lower bounds for several instances of quadratic assignment problems from the problem library: [R.E. Burkard, S.E. Karisch, F. Rendl. QAPLIB – a quadratic assignment problem … Read more

A polynomial predictor-corrector trust-region algorithm for linear programming

In this paper we present a scaling-invariant interior-point predictor-corrector type algorithm for linear programming (LP) whose iteration-complexity is polynomially bounded by the dimension and the logarithm of a certain condition number of the LP constraint matrix. At the predictor stage, the algorithm either takes the step along the standard affine scaling direction or a new … Read more

On the Extension of a Mehrotra-Type Algorithm for Semidefinite Optimization

It has been shown in various papers that most interior-point algorithms and their analysis can be generalized to semidefinite optimization. This paper presents an extension of the recent variant of Mehrotra’s predictor-corrector algorithm that was proposed by Salahi et al. (2005) for linear optimization problems. Based on the NT (Nesterov and Todd 1997) direction as … Read more

On the probabilistic complexity of finding an approximate solution for linear programming

We consider the problem of finding an $\epsilon-$optimal solution of a standard linear program with real data, i.e., of finding a feasible point at which the objective function value differs by at most $\epsilon$ from the optimal value. In the worst-case scenario the best complexity result to date guarantees that such a point is obtained … Read more