On Algebraic Proofs of Stability for Homogeneous Vector Fields

We prove that if a homogeneous, continuously differentiable vector field is asymptotically stable, then it admits a Lyapunov function which is the ratio of two polynomials (i.e., a rational function). We further show that when the vector field is polynomial, the Lyapunov inequalities on both the rational function and its derivative have sum of squares … Read more

Extensions of Yuan’s Lemma to fourth-order tensor system with applications

Yuan’s lemma is a basic proposition on homogeneous quadratic function system. In this paper, we extend Yuan’s lemma to 4th-order tensor system. We first give two gen- eralized definitions of positive semidefinite of 4th-order tensor, and based on them, two extensions of Yuan’s lemma are proposed. We illustrate the difference between our ex- tensions and … Read more

Exact Semidefinite Formulations for a Class of (Random and Non-Random) Nonconvex Quadratic Programs

We study a class of quadratically constrained quadratic programs (QCQPs), called {\em diagonal QCQPs\/}, which contain no off-diagonal terms $x_j x_k$ for $j \ne k$, and we provide a sufficient condition on the problem data guaranteeing that the basic Shor semidefinite relaxation is exact. Our condition complements and refines those already present in the literature … Read more

On self-concordant barriers for generalized power cones

In the study of interior-point methods for nonsymmetric conic optimization and their applications, Nesterov introduced the power cone, together with a 4-self-concordant barrier for it. In his PhD thesis, Chares found an improved 3-self-concordant barrier for the power cone. In addition, he introduced the generalized power cone, and conjectured a nearly optimal self-concordant barrier for … Read more

A Notion of Total Dual Integrality for Convex, Semidefinite, and Extended Formulations

Total dual integrality is a powerful and unifying concept in polyhedral combinatorics and integer programming that enables the refinement of geometric min-max relations given by linear programming Strong Duality into combinatorial min-max theorems. The definition of total dual integrality (TDI) revolves around the existence of optimal dual solutions that are integral, and thus naturally applies … Read more

The first heuristic specifically for mixed-integer second-order cone optimization

Mixed-integer second-order cone optimization (MISOCO) has become very popular in the last decade. Various aspects of solving these problems in Branch and Conic Cut (BCC) algorithms have been studied in the literature. This study aims to fill a gap and provide a novel way to find feasible solutions early in the BCC algorithm. Such solutions … Read more

Tight-and-cheap conic relaxation for the AC optimal power flow problem

The classical alternating current optimal power flow problem is highly nonconvex and generally hard to solve. Convex relaxations, in particular semidefinite, second-order cone, convex quadratic, and linear relaxations, have recently attracted significant interest. The semidefinite relaxation is the strongest among them and is exact for many cases. However, the computational efficiency for solving large-scale semidefinite … Read more

Sum of squares certificates for stability of planar, homogeneous, and switched systems

We show that existence of a global polynomial Lyapunov function for a homogeneous polynomial vector field or a planar polynomial vector field (under a mild condition) implies existence of a polynomial Lyapunov function that is a sum of squares (sos) and that the negative of its derivative is also a sum of squares. This result … Read more

Maximum-Entropy Sampling and the Boolean Quadric Polytope

We consider a bound for the maximum-entropy sampling problem (MESP) that is based on solving a max-det problem over a relaxation of the Boolean Quadric Polytope (BQP). This approach to MESP was first suggested by Christoph Helmberg over 15 years ago, but has apparently never been further elaborated or computationally investigated. We find that the … Read more

A projection algorithm based on KKT conditions for convex quadratic semidefinite programming with nonnegative constraints

The dual form of convex quadratic semidefinite programming (CQSDP) problem, with nonnegative constraints, is a 4-block separable convex optimization problem. It is known that,the directly extended 4-block alternating direction method of multipliers (ADMM4d) is very efficient to solve the dual, but its convergence is not guaranteed. In this paper, we reformulate the dual as a … Read more