A search for quantum coin-flipping protocols using optimization techniques

Coin-flipping is a cryptographic task in which two physically separated, mistrustful parties wish to generate a fair coin-flip by communicating with each other. Chailloux and Kerenidis (2009) designed quantum protocols that guarantee coin-flips with near optimal bias away from uniform, even when one party deviates arbitrarily from the protocol. The probability of any outcome in … Read more

A Branch-and-Bound Algorithm for the Close-Enough Traveling Salesman Problem

This paper deals with the Close-Enough Traveling Salesman Problem (CETSP). In the CETSP, rather than visiting the vertex (customer) itself, the salesman must visit a specific region containing such vertex. To solve this problem, we propose a simple yet effective exact algorithm, based on Branch-and-Bound and Second Order Cone Programming (SOCP). The proposed algorithm was … Read more

Polyhedral Approximation of Ellipsoidal Uncertainty Sets via Extended Formulations – a computational case study –

Robust optimization is an important technique to immunize optimization problems against data uncertainty. In the case of a linear program and an ellipsoidal uncertainty set, the robust counterpart turns into a second-order cone program. In this work, we investigate the efficiency of linearizing the second-order cone constraints of the latter. This is done using the … Read more

An improved Kalai-Kleitman bound for the diameter of a polyhedron

Kalai and Kleitman established the bound $n^{\log(d) + 2}$ for the diameter of a $d$-dimensional polyhedron with $n$ facets. Here we improve the bound slightly to $(n-d)^{\log(d)}$. Citation School of Operations Research and Information Engineering, Cornell University, Ithaca NY, USA, February 2014 Article Download View An improved Kalai-Kleitman bound for the diameter of a polyhedron

Variational Analysis of Circular Cone Programs

This paper conducts variational analysis of circular programs, which form a new class of optimization problems in nonsymmetric conic programming important for optimization theory and its applications. First we derive explicit formulas in terms of the initial problem data to calculate various generalized derivatives/coderivatives of the projection operator associated with the circular cone. Then we … Read more

On QPCCs, QCQPs and Completely Positive Programs

This paper studies several classes of nonconvex optimization problems defined over convex cones, establishing connections between them and demonstrating that they can be equivalently formulated as convex completely positive programs. The problems being studied include: a quadratically constrained quadratic program (QCQP), a quadratic program with complementarity constraints (QPCC), and rank constrained semidefinite programs. Our results … Read more

Eigenvalue, Quadratic Programming, and Semidefinite Programming Relaxations for a Cut Minimization Problem

We consider the problem of partitioning the node set of a graph into $k$ sets of given sizes in order to \emph{minimize the cut} obtained using (removing) the $k$-th set. If the resulting cut has value $0$, then we have obtained a vertex separator. This problem is closely related to the graph partitioning problem. In … Read more

From seven to eleven: completely positive matrices with high cp-rank

We study $n\times n$ completely positive matrices $M$ on the boundary of the completely positive cone, namely those orthogonal to a copositive matrix $S$ which generates a quadratic form with finitely many zeroes in the standard simplex. Constructing particular instances of $S$, we are able to construct counterexamples to the famous Drew-Johnson-Loewy conjecture (1994) for … Read more

An improved and simplified full-Newton step O(n) infeasible interior-point method for Linear Optimization

We present an improved version of an infeasible interior-point method for linear optimization published in 2006. In the earlier version each iteration consisted of one so-called infeasibility step and a few – at most three – centering steps. In this paper each iteration consists of only a infeasibility step, whereas the iteration bound improves the … Read more

Lagrangian-Conic Relaxations, Part II: Applications to Polynomial Optimization Problems

We present the moment cone (MC) relaxation and a hierarchy of sparse Lagrangian-SDP relaxations of polynomial optimization problems (POPs) using the unified framework established in Part I. The MC relaxation is derived for a POP of minimizing a polynomial subject to a nonconvex cone constraint and polynomial equality constraints. It is an extension of the … Read more