Generating and Measuring Instances of Hard Semidefinite Programs, SDP

Linear Programming, LP, problems with finite optimal value have a zero duality gap and a primal-dual strictly complementary optimal solution pair. On the other hand, there exists Semidefinite Programming, SDP, problems which have a nonzero duality gap (different primal and dual optimal values; not both infinite). The duality gap is assured to be zero if … Read more

A Note on Sparse SOS and SDP Relaxations for Polynomial Optimization Problems over Symmetric Cones

This short note extends the sparse SOS (sum of squares) and SDP (semidefinite programming) relaxation proposed by Waki, Kim, Kojima and Muramatsu for normal POPs (polynomial optimization problems) to POPs over symmetric cones, and establishes its theoretical convergence based on the recent convergence result by Lasserre on the sparse SOS and SDP relaxation for normal … Read more

Approximating the Chromatic Number of a Graph by Semidefinite Programming

We investigate hierarchies of semidefinite approximations for the chromatic number $\chi(G)$ of a graph $G$. We introduce an operator $\Psi$ mapping any graph parameter $\beta(G)$, nested between the stability number $\alpha(G)$ and $\chi(\bar G)$, to a new graph parameter $\Psi_\beta(G)$, nested between $\omega(G)$ and $\chi(G)$; $\Psi_\beta(G)$ is polynomial time computable if $\beta(G)$ is. As an … Read more

An LMI description for the cone of Lorentz-positive maps

Let $L_n$ be the $n$-dimensional second order cone. A linear map from $\mathbb R^m$ to $\mathbb R^n$ is called positive if the image of $L_m$ under this map is contained in $L_n$. For any pair $(n,m)$ of dimensions, the set of positive maps forms a convex cone. We construct a linear matrix inequality (LMI) that … Read more

A conic interior point decomposition approach for large scale semidefinite programming

We describe a conic interior point decomposition approach for solving a large scale semidefinite programs (SDP) whose primal feasible set is bounded. The idea is to solve such an SDP using existing primal-dual interior point methods, in an iterative fashion between a {\em master problem} and a {\em subproblem}. In our case, the master problem … Read more

On Time-Invariant Purified-Output-Based Discrete Time Control

In http://www.optimizationonline.org/DB_HTML/2005/05/1136.html 05/25/05, we have demonstrated that the family of all affine non-anticipative output-based control laws in a discrete time linear dynamical system affected by uncertain disturbances is equivalent, as far as state-control trajectories are concerned, to the family of all affine non-anticipative “purified-output-based” control laws. The advantage of the latter representation of affine controls … Read more

Variational Two-electron Reduced Density Matrix Theory for Many-electron Atoms and Molecules: Implementation of the Spin- and Symmetry-adapted T2 Condition through First-order Semidefinite Programming

The energy and properties of a many-electron atom or molecule may be directly computed from a variational optimization of a two-electron reduced density matrix (2-RDM) that is constrained to represent many-electron quantum systems. In this paper we implement a variational 2-RDM method with a representability constraint, known as the $T_2$ condition. The optimization of the … Read more

Embedded in the Shadow of the Separator

We study the problem of maximizing the second smallest eigenvalue of the Laplace matrix of a graph over all nonnegative edge weightings with bounded total weight. The optimal value is the \emph{absolute algebraic connectivity} introduced by Fiedler, who proved tight connections of this value to the connectivity of the graph. Using semidefinite programming techniques and … Read more

A copositive programming approach to graph partitioning

We consider 3-partitioning the vertices of a graph into sets $S_1, S_2$ and $S_3$ of specified cardinalities, such that the total weight of all edges joining $S_1$ and $S_2$ is minimized. This problem is closely related to several NP-hard problems like determining the bandwidth or finding a vertex separator in a graph. We show that … Read more

Approximation Algorithms for Indefinite Complex Quadratic Maximization Problems

In this paper we consider the following two types of complex quadratic maximization problems: (i) maximize $z^{\HH} Q z$, subject to $z_k^m=1$, $k=1,…,n$, where $Q$ is a Hermitian matrix with $\tr Q=0$ and $z\in \C^n$ is the decision vector; (ii) maximize $\re y^{\HH}Az$, subject to $y_k^m=1$, $k=1,…,p$, and $z_l^m=1$, $l=1,…,q$, where $A\in \C^{p\times q}$ and … Read more