Approximating the Chromatic Number of a Graph by Semidefinite Programming
We investigate hierarchies of semidefinite approximations for the chromatic number $\chi(G)$ of a graph $G$. We introduce an operator $\Psi$ mapping any graph parameter $\beta(G)$, nested between the stability number $\alpha(G)$ and $\chi(\bar G)$, to a new graph parameter $\Psi_\beta(G)$, nested between $\omega(G)$ and $\chi(G)$; $\Psi_\beta(G)$ is polynomial time computable if $\beta(G)$ is. As an … Read more