Constraint-Preconditioned Krylov Solvers for Regularized Saddle-Point Systems

We consider the iterative solution of regularized saddle-point systems. When the leading block is symmetric and positive semi-definite on an appropriate subspace, Dollar, Gould, Schilders, and Wathen (SIAM J. Matrix Anal. Appl., 28(1), 2006) describe how to apply the conjugate gradient (CG) method coupled with a constraint preconditioner, a choice that has proved to be … Read more

An analysis of the superiorization method via the principle of concentration of measure

The superiorization methodology is intended to work with input data of constrained minimization problems, i.e., a target function and a constraints set. However, it is based on an antipodal way of thinking to the thinking that leads constrained minimization methods. Instead of adapting unconstrained minimization algorithms to handling constraints, it adapts feasibility-seeking algorithms to reduce … Read more

An Infeasible Interior-point Arc-search Algorithm for Nonlinear Constrained Optimization

In this paper, we propose an infeasible arc-search interior-point algorithm for solving nonlinear programming problems. Most algorithms based on interior-point methods are categorized as line search in the sense that they compute a next iterate on a straight line determined by a search direction which approximates the central path. The proposed arc-search interior-point algorithm uses … Read more

On the Convergence to Stationary Points of Deterministic and Randomized Feasible Descent Directions Methods

This paper studies the class of nonsmooth nonconvex problems in which the difference between a continuously differentiable function and a convex nonsmooth function is minimized over linear constraints. Our goal is to attain a point satisfying the stationarity necessary optimality condition, defined as the lack of feasible descent directions. Although elementary in smooth optimization, this … Read more

Finding Second-Order Stationary Points in Constrained Minimization: A Feasible Direction Approach

This paper introduces a method for computing points satisfying the second-order necessary optimality conditions in constrained nonconvex minimization. The method comprises two independent steps corresponding to the first and second order conditions. The first-order step is a generic closed map algorithm which can be chosen from a variety of first-order algorithms, making it The second-order … Read more

Derivative-Free Superiorization: Principle and Algorithm

The superiorization methodology is intended to work with input data of constrained minimization problems, that is, a target function and a set of constraints. However, it is based on an antipodal way of thinking to what leads to constrained minimization methods. Instead of adapting unconstrained minimization algorithms to handling constraints, it adapts feasibility-seeking algorithms to … Read more

Methods for multiobjective bilevel optimization

This paper is on multiobjective bilevel optimization, i.e. on bilevel optimization problems with multiple objectives on the lower or on the upper level, or even on both levels. We give an overview on the major optimality notions used in multiobjective optimization. We provide characterization results for the set of optimal solutions of multiobjective optimization problems … Read more

Complexity of Proximal augmented Lagrangian for nonconvex optimization with nonlinear equality constraints

We analyze worst-case complexity of a Proximal augmented Lagrangian (Proximal AL) framework for nonconvex optimization with nonlinear equality constraints. When an approximate first-order (second-order) optimal point is obtained in the subproblem, an $\epsilon$ first-order (second-order) optimal point for the original problem can be guaranteed within $\mathcal{O}(1/ \epsilon^{2 – \eta})$ outer iterations (where $\eta$ is a … Read more

The Generalized Trust Region Subproblem: solution complexity and convex hull results

We consider the Generalized Trust Region Subproblem (GTRS) of minimizing a nonconvex quadratic objective over a nonconvex quadratic constraint. A lifting of this problem recasts the GTRS as minimizing a linear objective subject to two nonconvex quadratic constraints. Our first main contribution is structural: we give an explicit description of the convex hull of this … Read more

Mordukhovich Stationarity for Mathematical Programs with Switching Constraints under Weak Constraint Qualifications

The mathematical program with switching constraints (MPSC), which is recently introduced, is a difficult class of optimization problems since standard constraint qualifications are very likely to fail at local minimizers. MPSC arises from the discretization of optimal control problems with switching constraints which appears frequently in the field of control. Due to the failure of … Read more