Near-optimal analysis of univariate moment bounds for polynomial optimization

We consider a recent hierarchy of upper approximations proposed by Lasserre (arXiv:1907.097784, 2019) for the minimization of a polynomial f over a compact set K⊆ℝn. This hierarchy relies on using the push-forward measure of the Lebesgue measure on K by the polynomial f and involves univariate sums of squares of polynomials with growing degrees 2r. … Read more

An Outer-approximation Guided Optimization Approach for Constrained Neural Network Inverse Problems

This paper discusses an outer-approximation guided optimization method for constrained neural network inverse problems with rectified linear units. The constrained neural network inverse problems refer to an optimization problem to find the best set of input values of a given trained neural network in order to produce a predefined desired output in presence of constraints … Read more

A Class of Smooth Exact Penalty Function Methods for Optimization Problems with Orthogonality Constraints

Updating the augmented Lagrangian multiplier by closed-form expression yields efficient first-order infeasible approach for optimization problems with orthogonality constraints. Hence, parallelization becomes tractable in solving this type of problems. Inspired by this closed-form updating scheme, we propose an exact penalty function model with compact convex constraints (PenC). We show that PenC can act as an … Read more

A bundle method for nonsmooth DC programming with application to chance-constrained problems

This work considers nonsmooth and nonconvex optimization problems whose objective and constraint functions are defined by difference-of-convex (DC) functions. We consider an infeasible bundle method based on the so-called improvement functions to compute critical points for problems of this class. Our algorithm neither employs penalization techniques nor solves subproblems with linearized constraints. The approach, which … Read more

Strong Evaluation Complexity Bounds for Arbitrary-Order Optimization of Nonconvex Nonsmooth Composite Functions

We introduce the concept of strong high-order approximate minimizers for nonconvex optimization problems. These apply in both standard smooth and composite non-smooth settings, and additionally allow convex or inexpensive constraints. An adaptive regularization algorithm is then proposed to find such approximate minimizers. Under suitable Lipschitz continuity assumptions, whenever the feasible set is convex, it is … Read more

A primal-dual modified log-barrier method for inequality constrained nonlinear optimization

We present a primal-dual modified log-barrier algorithm to solve inequality constrained nonlinear optimization problems. Basically, the algorithm is a Newton-like method applied to a perturbation of the optimality system that follows from a reformulation of the initial problem by introducing a modified log-barrier function to handle inequality constraints. The algorithm uses an outer/inner iteration scheme … Read more

Nonconvex Constrained Optimization by a Filtering Branch and Bound

A major difficulty in optimization with nonconvex constraints is to find feasible solutions. As simple examples show, the alphaBB-algorithm for single-objective optimization may fail to compute feasible solutions even though this algorithm is a popular method in global optimization. In this work, we introduce a filtering approach motivated by a multiobjective reformulation of the constrained … Read more

Active Set Complexity of the Away-step Frank-Wolfe Algorithm

In this paper, we study active set identification results for the away-step Frank-Wolfe algorithm in different settings. We first prove a local identification property that we apply, in combination with a convergence hypothesis, to get an active set identification result. We then prove, in the nonconvex case, a novel O(1/ √k) convergence rate result and … Read more

Proximity measures based on KKT points for constrained multi-objective optimization

An important aspect of optimization algorithms, for instance evolutionary algorithms, are termination criteria that measure the proximity of the found solution to the optimal solution set. A frequently used approach is the numerical verification of necessary optimality conditions such as the Karush-Kuhn-Tucker (KKT) conditions. In this paper, we present a proximity measure which characterizes the … Read more

On Constraint Qualifications for Second-Order Optimality Conditions Depending on a Single Lagrange Multiplier.

Second-order optimality conditions play an important role in continuous optimization. In this paper, we present and discuss new constraint qualifications to ensure the validity of some well-known second-order optimality conditions. Our main interest is on second-order conditions that can be associated with numerical methods for solving constrained optimization problems. Such conditions depend on a single … Read more