Lagrangean Decomposition for Mean-Variance Combinatorial Optimization

We address robust versions of combinatorial optimization problems, focusing on the uncorrelated ellipsoidal uncertainty case, which corresponds to so-called mean-variance optimization. We present a branch and bound-algorithm for such problems that uses lower bounds obtained from Lagrangean decomposition. This approach allows to separate the uncertainty aspect in the objective function from the combinatorial structure of … Read more

A Primal Heuristic for MINLP based on Dual Information

We present a novel heuristic algorithm to identify feasible solutions of a mixed-integer nonlinear programming problem arising in natural gas transportation: the selection of new pipelines to enhance the network’s capacity to a desired level in a cost-efficient way. We solve this problem in a linear programming based branch-and-cut approach, where we deal with the … Read more

Narrowing the difficulty gap for the Celis-Dennis-Tapia problem

We study the {\em Celis-Dennis-Tapia (CDT) problem}: minimize a non-convex quadratic function over the intersection of two ellipsoids. In contrast to the well-studied trust region problem where the feasible set is just one ellipsoid, the CDT problem is not yet fully understood. Our main objective in this paper is to narrow the difficulty gap that … Read more

A Regularized SQP Method with Convergence to Second-Order Optimal Points

Regularized and stabilized sequential quadratic programming methods are two classes of sequential quadratic programming (SQP) methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that provides a strong connection between augmented Lagrangian methods and stabilized SQP methods. The method … Read more

Constant rank constraint qualifications: a geometric introduction

Constraint qualifications (CQ) are assumptions on the algebraic description of the feasible set of an optimization problem that ensure that the KKT conditions hold at any local minimum. In this work we show that constraint qualifications based on the notion of constant rank can be understood as assumptions that ensure that the polar of the … Read more

Complementarity Formulations of l0-norm Optimization Problems

In a number of application areas, it is desirable to obtain sparse solutions. Minimizing the number of nonzeroes of the solution (its l0-norm) is a difficult nonconvex optimization problem, and is often approximated by the convex problem of minimizing the l1-norm. In contrast, we consider exact formulations as mathematical programs with complementarity constraints and their … Read more

Rounding on the standard simplex: regular grids for global optimization

Given a point on the standard simplex, we calculate a proximal point on the regular grid which is closest with respect to any norm in a large class, including all $\ell^p$-norms for $p\ge 1$. We show that the minimal $\ell^p$-distance to the regular grid on the standard simplex can exceed one, even for very fine … Read more

The Euclidean distance degree of an algebraic variety

The nearest point map of a real algebraic variety with respect to Euclidean distance is an algebraic function. For instance, for varieties of low rank matrices, the Eckart-Young Theorem states that this map is given by the singular value decomposition. This article develops a theory of such nearest point maps from the perspective of computational … Read more

A new formulation of protein evolutionary models that account for structural constraints

Despite the importance of a thermodynamically stable structure with a conserved fold for protein function, almost all evolutionary models neglect site-site correlations that arise from physical interactions between neighboring amino acid sites. This is mainly due to the difficulty in formulating a computationally tractable model since rate matrices can no longer be used. Here we … Read more

String-Averaging Projected Subgradient Methods for Constrained Minimization

We consider constrained minimization problems and propose to replace the projection onto the entire feasible region, required in the Projected Subgradient Method (PSM), by projections onto the individual sets whose intersection forms the entire feasible region. Specifically, we propose to perform such projections onto the individual sets in an algorithmic regime of a feasibility-seeking iterative … Read more