On the Existence of Pareto Solutions for Polynomial Vector Optimization Problems

We are interested in the existence of Pareto solutions to the vector optimization problem $$\text{\rm Min}_{\,\mathbb{R}^m_+} \{f(x) \,|\, x\in \mathbb{R}^n\},$$ where $f\colon\mathbb{R}^n\to \mathbb{R}^m$ is a polynomial map. By using the {\em tangency variety} of $f$ we first construct a semi-algebraic set of dimension at most $m – 1$ containing the set of Pareto values of … Read more

A parallelizable augmented Lagrangian method applied to large-scale non-convex-constrained optimization problems

We contribute improvements to a Lagrangian dual solution approach applied to large-scale optimization problems whose objective functions are convex, continuously differentiable and possibly nonlinear, while the non-relaxed constraint set is compact but not necessarily convex. Such problems arise, for example, in the split-variable deterministic reformulation of stochastic mixed-integer optimization problems. The dual solution approach needs … Read more

Efficient solution of quadratically constrained quadratic subproblems within the MADS algorithm

The Mesh Adaptive Direct Search algorithm (MADS) is an iterative method for constrained blackbox optimization problems. One of the optional MADS features is a versatile search step in which quadratic models are built leading to a series of quadratically constrained quadratic subproblems. This work explores different algorithms that exploit the structure of the quadratic models: … Read more

The Rate of Convergence of Augmented Lagrange Method for a Composite Optimization Problem

In this paper we analyze the rate of local convergence of the augmented Lagrange method for solving optimization problems with equality constraints and the objective function expressed as the sum of a convex function and a twice continuously differentiable function. The presence of the non-smoothness of the convex function in the objective requires extensive tools … Read more

Locally weighted regression models for surrogate-assisted design optimization

Locally weighted regression combines the advantages of polynomial regression and kernel smoothing. We present three ideas for appropriate and effective use of LOcally WEighted Scatterplot Smoothing (LOWESS) models for surrogate optimization. First, a method is proposed to reduce the computational cost of LOWESS models. Second, a local scaling coefficient is introduced to adapt LOWESS models … Read more

trlib: A vector-free implementation of the GLTR method for iterative solution of the trust region problem

We describe trlib, a library that implements a Variant of Gould’s Generalized Lanczos method (Gould et al. in SIAM J. Opt. 9(2), 504–525, 1999) for solving the trust region problem. Our implementation has several distinct features that set it apart from preexisting ones. We implement both conjugate gradient (CG) and Lanczos iterations for assembly of … Read more

Numerical solution of optimal control problems with explicit and implicit switches

In this article, we present a unified framework for the numerical solution of optimal control problems constrained by ordinary differential equations with both implicit and explicit switches. We present the problem class and qualify different types of implicitly switched systems. This classification significantly affects opportunities for solving such problems numerically. By using techniques from generalized … Read more

Sequential Linear Programming and Particle Swarm Optimization for the optimization of energy districts

In this paper we deal with the optimization of energy resources management of industrial districts, with the aim of minimizing the customer energy expenses. In a district the number of possible energy system combinations is really large, and a manual design approach might lead to a suboptimal solution. For this reason we designed a software … Read more

Global Solution Strategies for the Network-Constrained Unit Commitment Problem With AC Transmission Constraints

We propose a novel global solution algorithm for the network-constrained unit commitment problem that incorporates a nonlinear alternating current model of the transmission network, which is a nonconvex mixed-integer nonlinear programming (MINLP) problem. Our algorithm is based on the multi-tree global optimization methodology, which iterates between a mixed-integer lower-bounding problem and a nonlinear upper-bounding problem. … Read more

BFGS-like updates of constraint preconditioners for sequences of KKT linear systems

We focus on efficient preconditioning techniques for sequences of KKT linear systems arising from the interior point solution of large convex quadratic programming problems. Constraint Preconditioners (CPs), though very effective in accelerating Krylov methods in the solution of KKT systems, have a very high computational cost in some instances, because their factorization may be the … Read more