HIPAD – A Hybrid Interior-Point Alternating Direction algorithm for knowledge-based SVM and feature selection

We consider classification tasks in the regime of scarce labeled training data in high dimensional feature space, where specific expert knowledge is also available. We propose a new hybrid optimization algorithm that solves the elastic-net support vector machine (SVM) through an alternating direction method of multipliers in the first phase, followed by an interior-point method … Read more

Globally Convergent Primal-Dual Active-Set Methods with Inexact Subproblem Solves

We propose primal-dual active-set (PDAS) methods for solving large-scale instances of an important class of convex quadratic optimization problems (QPs). The iterates of the algorithms are partitions of the index set of variables, where corresponding to each partition there exist unique primal-dual variables that can be obtained by solving a (reduced) linear system. Algorithms of … Read more

Nonlinear local error bounds via a change of metric

In this work, we improve the approach of Corvellec-Motreanu to nonlinear error bounds for lowersemicontinuous functions on complete metric spaces, an approach consisting in reducing the nonlinear case to the linear one through a change of metric. This improvement is basically a technical one, and allows dealing with local error bounds in an appropriate way. … Read more

A Trust Region Algorithm with a Worst-Case Iteration Complexity of ${\cal O}(\epsilon^{-3/2})$ for Nonconvex Optimization

We propose a trust region algorithm for solving nonconvex smooth optimization problems. For any $\bar\epsilon \in (0,\infty)$, the algorithm requires at most $\mathcal{O}(\epsilon^{-3/2})$ iterations, function evaluations, and derivative evaluations to drive the norm of the gradient of the objective function below any $\epsilon \in (0,\bar\epsilon]$. This improves upon the $\mathcal{O}(\epsilon^{-2})$ bound known to hold for … Read more

High Detail Stationary Optimization Models for Gas Networks: Validation and Results

Due to strict regulatory rules in combination with complex nonlinear physics, major gas network operators in Germany and Europe face hard planning problems that call for optimization. In part 1 of this paper we have developed a suitable model hierarchy for that purpose. Here we consider the more practical aspects of modeling. We validate individual … Read more

Iteration Bounds for Finding the $\epsilonhBcStationary Points for Structured Nonconvex Optimization

In this paper we study proximal conditional-gradient (CG) and proximal gradient-projection type algorithms for a block-structured constrained nonconvex optimization model, which arises naturally from tensor data analysis. First, we introduce a new notion of $\epsilon$-stationarity, which is suitable for the structured problem under consideration. %, compared with other similar solution concepts. We then propose two … Read more

On an inexact trust-region SQP-filter method for constrained nonlinear optimization

A class of trust-region algorithms is developed and analyzed for the solution of optimization problems with nonlinear equality and inequality constraints. Based on composite-step trust region methods and a filter approach, the resulting algorithm also does not require the computation of exact Jacobians; only Jacobian vector products are used along with approximate Jacobian matrices. As … Read more

A Flexible Iterative Solver for Nonconvex, Equality-Constrained Quadratic Subproblems

We present an iterative primal-dual solver for nonconvex equality-constrained quadratic optimization subproblems. The solver constructs the primal and dual trial steps from the subspace generated by the generalized Arnoldi procedure used in flexible GMRES (FGMRES). This permits the use of a wide range of preconditioners for the primal-dual system. In contrast with FGMRES, the proposed … Read more

Weak and Strong Superiorization: Between Feasibility-Seeking and Minimization

We review the superiorization methodology, which can be thought of, in some cases, as lying between feasibility-seeking and constrained minimization. It is not quite trying to solve the full fledged constrained minimization problem; rather, the task is to find a feasible point which is superior (with respect to an objective function value) to one returned … Read more

Majorization-minimization procedures and convergence of SQP methods for semi-algebraic and tame programs

In view of solving nonsmooth and nonconvex problems involving complex constraints (like standard NLP problems), we study general maximization-minimization procedures produced by families of strongly convex sub-problems. Using techniques from semi-algebraic geometry and variational analysis –in particular Lojasiewicz inequality– we establish the convergence of sequences generated by this type of schemes to critical points. The … Read more