A note on Legendre-Fenchel conjugate of the product of two positive-definite quadratic forms

The Legendre-Fenchel conjugate of the product of two positive-definite quadratic forms was posted as an open question in the field of nonlinear analysis and optimization by Hiriart-Urruty [`Question 11′ in {\it SIAM Review} 49, 255-273, (2007)]. Under a convex assumption on the function, it was answered by Zhao [SIAM J. Matrix Analysis $\&$ Applications, 31(4), … Read more

Convergence of trust-region methods based on probabilistic models

In this paper we consider the use of probabilistic or random models within a classical trust-region framework for optimization of deterministic smooth general nonlinear functions. Our method and setting differs from many stochastic optimization approaches in two principal ways. Firstly, we assume that the value of the function itself can be computed without noise, in … Read more

Globally convergent DC trust-region methods

In this paper, we investigate the use of DC (Difference of Convex functions) models and algorithms in the solution of nonlinear optimization problems by trust-region methods. We consider DC local models for the quadratic model of the objective function used to compute the trust-region step, and apply a primal-dual subgradient method to the solution of … Read more

Worst case complexity of direct search under convexity

In this paper we prove that the broad class of direct-search methods of directional type, based on imposing sufficient decrease to accept new iterates, exhibits the same global rate or worst case complexity bound of the gradient method for the unconstrained minimization of a convex and smooth function. More precisely, it will be shown that … Read more

A merit function approach for direct search

In this paper it is proposed to equip direct-search methods with a general procedure to minimize an objective function, possibly non-smooth, without using derivatives and subject to constraints on the variables. One aims at considering constraints, most likely nonlinear or non-smooth, for which the derivatives of the corresponding functions are also unavailable. The novelty of … Read more

Faster, but Weaker, Relaxations for Quadratically Constrained Quadratic Programs

We introduce a new relaxation framework for nonconvex quadratically constrained quadratic programs (QCQPs). In contrast to existing relaxations based on semidefinite programming (SDP), our relaxations incorporate features of both SDP and second order cone programming (SOCP) and, as a result, solve more quickly than SDP. A downside is that the calculated bounds are weaker than … Read more

A SIMPLE TROLLEY-LIKE MODEL IN THE PRESENCE OF A NONLINEAR FRICTION AND A BOUNDED FUEL EXPENDITURE

We consider a problem of maximization of the distance traveled by a material point in the presence of a nonlinear friction under a bounded thrust and fuel expenditure. Using the maximum principle we obtain the form of optimal control and establish conditions under which it contains a singular subarc. This problem seems to be the … Read more

Properly optimal elements in vector optimization with variable ordering structures

In this paper, proper optimality concepts in vector optimization with variable ordering structures are introduced for the first time and characterization results via scalarizations are given. New type of scalarizing functionals are presented and their properties are discussed. The scalarization approach suggested in the paper does not require convexity and boundedness conditions. Citation Preprint of … Read more

On the evaluation complexity of constrained nonlinear least-squares and general constrained nonlinear optimization using second-order methods

When solving the general smooth nonlinear optimization problem involving equality and/or inequality constraints, an approximate first-order critical point of accuracy $\epsilon$ can be obtained by a second-order method using cubic regularization in at most $O(\epsilon^{-3/2})$ problem-functions evaluations, the same order bound as in the unconstrained case. This result is obtained by first showing that the … Read more

A Perturbed Sums of Squares Theorem for Polynomial Optimization and its Applications

We consider a property of positive polynomials on a compact set with a small perturbation. When applied to a Polynomial Optimization Problem (POP), the property implies that the optimal value of the corresponding SemiDefinite Programming (SDP) relaxation with sufficiently large relaxation order is bounded from below by $(f^¥ast – ¥epsilon)$ and from above by $f^¥ast … Read more