Genetic Algorithm for Solving Convex Quadratic Bilevel Programming Problem

This paper presents a genetic algorithm method for solving convex quadratic bilevel programming problem. Bilevel programming problems arise when one optimization problem, the upper problem, is constrained by another optimization, the lower problem. In this paper, the bilevel convex quadratic problem is transformed into a single level problem by applying Kuhn-Tucker conditions, and then an … Read more

An Interior Point Method for Mathematical Programs with Complementarity Constraints (MPCCs)

Interior point methods for nonlinear programs (NLPs) are adapted for solution of mathematical programs with complementarity constraints (MPCCs). The constraints of the MPCC are suitably relaxed so as to guarantee a strictly feasible interior for the inequality constraints. The standard primal-dual algorithm has been adapted with a modified step calculation. The algorithm is shown to … Read more

A Starting-Point Strategy for Nonlinear Interior Methods

This paper presents a strategy for choosing the initial point, slacks and multipliers in interior methods for nonlinear programming. It consists of first computing a Newton-like step to estimate the magnitude of these three variables and then shifting the slacks and multipliers so that they are sufficiently positive. The new strategy has the option of … Read more

Global optimization of rational functions: a semidefinite programming approach

We consider the problem of global minimization of rational functions on $\LR^n$ (unconstrained case), and on an open, connected, semi-algebraic subset of $\LR^n$, or the (partial) closure of such a set (constrained case). We show that in the univariate case ($n=1$), these problems have exact reformulations as semidefinite programming (SDP) problems, by using reformulations introduced … Read more

Characterizations of error bounds for lower semicontinuous functions on metric spaces

By using a variational method based on Ekeland’s principle, we give characterizations of the existence of so-called global and local error bounds, for lower semicontinuous functions defined on complete metric spaces. We thus provide a systematic and synthetic approach to the subject, emphasizing the special case of convex functions defined on arbitrary Banach spaces, and … Read more

SIAG/Opt Views-and-News Vol 14 No 1

SIAM’s SIAG/Opt Newsletter special issue on Large Scale Nonconvex Optimization. Guest editors Sven Leyffer and Jorge Nocedal, with contributions by Gould, Sachs, Biegler, Waechter, Leyffer, Bussieck and Pruessner. Citation SIAG/Opt Views-and-News, Volume 14 Number 1, April 2003. Article Download View SIAG/Opt Views-and-News Vol 14 No 1

A Multicriteria Approach to Bilevel Optimization

In this paper we study the relationship between bilevel optimization and bicriteria optimization. Given a bilevel optimization problem, we introduce an order relation such that the optimal solutions of the bilevel problem are the nondominated points with respect to the order relation. In the case where the lower level problem of the bilevel optimization problem … Read more

Error Estimates and Poisedness in Multivariate Polynomial Interpolation

We show how to derive error estimates between a function and its interpolating polynomial and between their corresponding derivatives. The derivation is based on a new definition of well-poisedness for the interpolation set, directly connecting the accuracy of the error estimates with the geometry of the points in the set. This definition is equivalent to … Read more

On the Convergence of Successive Linear Programming Algorithms

We analyze the global convergence properties of a class of penalty methods for nonlinear programming. These methods include successive linear programming approaches, and more specifically the SLP-EQP approach presented in \cite{ByrdGoulNoceWalt02}. Every iteration requires the solution of two trust region subproblems involving linear and quadratic models, respectively. The interaction between the trust regions of these … Read more

A hybrid algorithm for nonlinear equality constrained optimization problems: global and local convergence theory

In this paper we combine both trust-region and linesearch globalization strategies in a globally convergent hybrid algorithm to solve a continuously differentiable nonlinear equality constrained minimization problem. First, the trust-region approach is used to determine a descent direction of the augmented Lagrangian chosen as the merit function, and second, linesearch techniques are used to obtain … Read more