On the superlinear local convergence of a filter-SQP method

Transition to superlinear local convergence is shown for a modified version of the trust-region filter-SQP method for nonlinear programming introduced by Fletcher, Leyffer, and Toint [8]. Hereby, the original trust-region SQP-steps can be used without an additional second order correction. The main modification consists in using the Lagrangian function value instead of the objective function … Read more

Semidefinite optimization, a spectral approach

This thesis is about mathematical optimization. Mathematical optimization involves the construction of methods to solve optimization problems, which can arise from real-life problems in applied science, when they are mathematically modeled. Examples come from electrical design, engineering, control theory, telecommunication, environment, finance, and logistics. This thesis deals especially with semidefinite optimization problems. Semidefinite programming is … Read more

Symbolic-interval heuristic for bound-constrained minimization

Bound-constrained global optimization helps answer many practical questions in chemistry, molecular biology, economics. Most of algorithms for solution of global optimization problems are a combination of interval methods and exhuastive search. The efficiency of such algorithms is characterized by their ability to detect and eliminate sub-optimal feasible regions. This ability is increased by availability of … Read more

Computing Mountain Passes

We propose the elastic string algorithm for computing mountain passes in finite-dimensional problems. We analyze the convergence properties and numerical performance of this algorithm for benchmark problems in chemistry and discretizations of infinite-dimensional variational problems. We show that any limit point of the elastic string algorithm is a path that crosses a critical point at … Read more

Sufficient Global Optimality Conditions for Bivalent Quadratic Optimization

We prove a sufficient global optimality condition for quadratic optimization with quadratic constraints where the variables are allowed to take -1 and 1 values. We extend the condition to quadratic programs with matrix variables and orthogonality conditions, and in particular, to the quadratic assignment problem. CitationBilkent University Technical Report, September 2002.ArticleDownload View PDF

The Trust Region Subproblem and Semidefinite Programming

The trust region subproblem (the minimization of a quadratic objective subject to one quadratic constraint and denoted TRS) has many applications in diverse areas, e.g. function minimization, sequential quadratic programming, regularization, ridge regression, and discrete optimization. In particular, it determines the step in trust region algorithms for function minimization. Trust region algorithms are popular for … Read more

Extension of Quasi-Newton Methods to Mathematical Programs with Complementarity Constraints

Quasi-Newton methods in conjunction with the piecewise sequential quadratic programming are investigated for solving mathematical programming with equilibrium constraints, in particular for problems with complementarity constraints. Local convergence as well as superlinear convergence of these quasi-Newton methods can be established under suitable assumptions. In particular, several well-known quasi-Newton methods such as BFGS and DFP are … Read more

Convergence of a Penalty Method for Mathematical Programmingwith ComplementarityConstraints

We adapt the convergence analysis of smoothing (Fukushima and Pang) and regularization (Scholtes) methods to a penalty framework for mathematical programs with complementarity constraints (MPCCs), and show that the penalty framework shares similar convergence properties to these methods. Moreover, we give sufficient conditions for a sequence generated by the penalty framework to be attracted to … Read more

An (n-2)-dimensional Quadratic Surface Determining All Cliques and a Least Square Formulation for the Maximum Clique Problem

Arranging an n-vertex graph as the standard simplex in R^n, we identify graph cliques with simplex faces formed by clique vertices. An unstrict quadratic inequality holds for all points of the simplex; it turns to equality if and only if the point is on a face corresponding to a clique. This way this equality determines … Read more

Numerical experience with solving MPECs as NLPs

This paper describes numerical experience with solving MPECs as NLPs on a large collection of test problems. The key idea is to use off-the-shelf NLP solvers to tackle large instances of MPECs. It is shown that SQP methods are very well suited to solving MPECs and at present outperform Interior Point solvers both in terms … Read more